This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ovolss . (Contributed by Mario Carneiro, 16-Mar-2014) (Proof shortened by AV, 17-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolss.1 | ⊢ 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } | |
| ovolss.2 | ⊢ 𝑁 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } | ||
| Assertion | ovolsslem | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolss.1 | ⊢ 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } | |
| 2 | ovolss.2 | ⊢ 𝑁 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } | |
| 3 | sstr2 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) → 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) | |
| 4 | 3 | ad2antrr | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) ∧ 𝑦 ∈ ℝ* ) → ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) → 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
| 5 | 4 | anim1d | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) ∧ 𝑦 ∈ ℝ* ) → ( ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) ) |
| 6 | 5 | reximdv | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) ∧ 𝑦 ∈ ℝ* ) → ( ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) ) |
| 7 | 6 | ss2rabdv | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } ⊆ { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } ) |
| 8 | 7 2 1 | 3sstr4g | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → 𝑁 ⊆ 𝑀 ) |
| 9 | sstr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → 𝐴 ⊆ ℝ ) | |
| 10 | 1 | ovolval | ⊢ ( 𝐴 ⊆ ℝ → ( vol* ‘ 𝐴 ) = inf ( 𝑀 , ℝ* , < ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝑀 ) → ( vol* ‘ 𝐴 ) = inf ( 𝑀 , ℝ* , < ) ) |
| 12 | 1 | ssrab3 | ⊢ 𝑀 ⊆ ℝ* |
| 13 | infxrlb | ⊢ ( ( 𝑀 ⊆ ℝ* ∧ 𝑥 ∈ 𝑀 ) → inf ( 𝑀 , ℝ* , < ) ≤ 𝑥 ) | |
| 14 | 12 13 | mpan | ⊢ ( 𝑥 ∈ 𝑀 → inf ( 𝑀 , ℝ* , < ) ≤ 𝑥 ) |
| 15 | 14 | adantl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝑀 ) → inf ( 𝑀 , ℝ* , < ) ≤ 𝑥 ) |
| 16 | 11 15 | eqbrtrd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝑀 ) → ( vol* ‘ 𝐴 ) ≤ 𝑥 ) |
| 17 | 16 | ralrimiva | ⊢ ( 𝐴 ⊆ ℝ → ∀ 𝑥 ∈ 𝑀 ( vol* ‘ 𝐴 ) ≤ 𝑥 ) |
| 18 | 9 17 | syl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → ∀ 𝑥 ∈ 𝑀 ( vol* ‘ 𝐴 ) ≤ 𝑥 ) |
| 19 | ssralv | ⊢ ( 𝑁 ⊆ 𝑀 → ( ∀ 𝑥 ∈ 𝑀 ( vol* ‘ 𝐴 ) ≤ 𝑥 → ∀ 𝑥 ∈ 𝑁 ( vol* ‘ 𝐴 ) ≤ 𝑥 ) ) | |
| 20 | 8 18 19 | sylc | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → ∀ 𝑥 ∈ 𝑁 ( vol* ‘ 𝐴 ) ≤ 𝑥 ) |
| 21 | 2 | ssrab3 | ⊢ 𝑁 ⊆ ℝ* |
| 22 | ovolcl | ⊢ ( 𝐴 ⊆ ℝ → ( vol* ‘ 𝐴 ) ∈ ℝ* ) | |
| 23 | 9 22 | syl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
| 24 | infxrgelb | ⊢ ( ( 𝑁 ⊆ ℝ* ∧ ( vol* ‘ 𝐴 ) ∈ ℝ* ) → ( ( vol* ‘ 𝐴 ) ≤ inf ( 𝑁 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝑁 ( vol* ‘ 𝐴 ) ≤ 𝑥 ) ) | |
| 25 | 21 23 24 | sylancr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → ( ( vol* ‘ 𝐴 ) ≤ inf ( 𝑁 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝑁 ( vol* ‘ 𝐴 ) ≤ 𝑥 ) ) |
| 26 | 20 25 | mpbird | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → ( vol* ‘ 𝐴 ) ≤ inf ( 𝑁 , ℝ* , < ) ) |
| 27 | 2 | ovolval | ⊢ ( 𝐵 ⊆ ℝ → ( vol* ‘ 𝐵 ) = inf ( 𝑁 , ℝ* , < ) ) |
| 28 | 27 | adantl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → ( vol* ‘ 𝐵 ) = inf ( 𝑁 , ℝ* , < ) ) |
| 29 | 26 28 | breqtrrd | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ 𝐵 ) ) |