This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal class is equal to its union if and only if it is not the successor of an ordinal. Closed-form generalization of onuninsuci . (Contributed by NM, 18-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | orduninsuc | |- ( Ord A -> ( A = U. A <-> -. E. x e. On A = suc x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordeleqon | |- ( Ord A <-> ( A e. On \/ A = On ) ) |
|
| 2 | id | |- ( A = if ( A e. On , A , (/) ) -> A = if ( A e. On , A , (/) ) ) |
|
| 3 | unieq | |- ( A = if ( A e. On , A , (/) ) -> U. A = U. if ( A e. On , A , (/) ) ) |
|
| 4 | 2 3 | eqeq12d | |- ( A = if ( A e. On , A , (/) ) -> ( A = U. A <-> if ( A e. On , A , (/) ) = U. if ( A e. On , A , (/) ) ) ) |
| 5 | eqeq1 | |- ( A = if ( A e. On , A , (/) ) -> ( A = suc x <-> if ( A e. On , A , (/) ) = suc x ) ) |
|
| 6 | 5 | rexbidv | |- ( A = if ( A e. On , A , (/) ) -> ( E. x e. On A = suc x <-> E. x e. On if ( A e. On , A , (/) ) = suc x ) ) |
| 7 | 6 | notbid | |- ( A = if ( A e. On , A , (/) ) -> ( -. E. x e. On A = suc x <-> -. E. x e. On if ( A e. On , A , (/) ) = suc x ) ) |
| 8 | 4 7 | bibi12d | |- ( A = if ( A e. On , A , (/) ) -> ( ( A = U. A <-> -. E. x e. On A = suc x ) <-> ( if ( A e. On , A , (/) ) = U. if ( A e. On , A , (/) ) <-> -. E. x e. On if ( A e. On , A , (/) ) = suc x ) ) ) |
| 9 | 0elon | |- (/) e. On |
|
| 10 | 9 | elimel | |- if ( A e. On , A , (/) ) e. On |
| 11 | 10 | onuninsuci | |- ( if ( A e. On , A , (/) ) = U. if ( A e. On , A , (/) ) <-> -. E. x e. On if ( A e. On , A , (/) ) = suc x ) |
| 12 | 8 11 | dedth | |- ( A e. On -> ( A = U. A <-> -. E. x e. On A = suc x ) ) |
| 13 | unon | |- U. On = On |
|
| 14 | 13 | eqcomi | |- On = U. On |
| 15 | onprc | |- -. On e. _V |
|
| 16 | vex | |- x e. _V |
|
| 17 | 16 | sucex | |- suc x e. _V |
| 18 | eleq1 | |- ( On = suc x -> ( On e. _V <-> suc x e. _V ) ) |
|
| 19 | 17 18 | mpbiri | |- ( On = suc x -> On e. _V ) |
| 20 | 15 19 | mto | |- -. On = suc x |
| 21 | 20 | a1i | |- ( x e. On -> -. On = suc x ) |
| 22 | 21 | nrex | |- -. E. x e. On On = suc x |
| 23 | 14 22 | 2th | |- ( On = U. On <-> -. E. x e. On On = suc x ) |
| 24 | id | |- ( A = On -> A = On ) |
|
| 25 | unieq | |- ( A = On -> U. A = U. On ) |
|
| 26 | 24 25 | eqeq12d | |- ( A = On -> ( A = U. A <-> On = U. On ) ) |
| 27 | eqeq1 | |- ( A = On -> ( A = suc x <-> On = suc x ) ) |
|
| 28 | 27 | rexbidv | |- ( A = On -> ( E. x e. On A = suc x <-> E. x e. On On = suc x ) ) |
| 29 | 28 | notbid | |- ( A = On -> ( -. E. x e. On A = suc x <-> -. E. x e. On On = suc x ) ) |
| 30 | 26 29 | bibi12d | |- ( A = On -> ( ( A = U. A <-> -. E. x e. On A = suc x ) <-> ( On = U. On <-> -. E. x e. On On = suc x ) ) ) |
| 31 | 23 30 | mpbiri | |- ( A = On -> ( A = U. A <-> -. E. x e. On A = suc x ) ) |
| 32 | 12 31 | jaoi | |- ( ( A e. On \/ A = On ) -> ( A = U. A <-> -. E. x e. On A = suc x ) ) |
| 33 | 1 32 | sylbi | |- ( Ord A -> ( A = U. A <-> -. E. x e. On A = suc x ) ) |