This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal subset of an ordinal number belongs to its successor. (Contributed by NM, 1-Feb-2005) (Proof shortened by Andrew Salmon, 12-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordsssuc2 | |- ( ( Ord A /\ B e. On ) -> ( A C_ B <-> A e. suc B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elong | |- ( A e. _V -> ( A e. On <-> Ord A ) ) |
|
| 2 | 1 | biimprd | |- ( A e. _V -> ( Ord A -> A e. On ) ) |
| 3 | 2 | anim1d | |- ( A e. _V -> ( ( Ord A /\ B e. On ) -> ( A e. On /\ B e. On ) ) ) |
| 4 | onsssuc | |- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> A e. suc B ) ) |
|
| 5 | 3 4 | syl6 | |- ( A e. _V -> ( ( Ord A /\ B e. On ) -> ( A C_ B <-> A e. suc B ) ) ) |
| 6 | annim | |- ( ( B e. On /\ -. A e. _V ) <-> -. ( B e. On -> A e. _V ) ) |
|
| 7 | ssexg | |- ( ( A C_ B /\ B e. On ) -> A e. _V ) |
|
| 8 | 7 | ex | |- ( A C_ B -> ( B e. On -> A e. _V ) ) |
| 9 | elex | |- ( A e. suc B -> A e. _V ) |
|
| 10 | 9 | a1d | |- ( A e. suc B -> ( B e. On -> A e. _V ) ) |
| 11 | 8 10 | pm5.21ni | |- ( -. ( B e. On -> A e. _V ) -> ( A C_ B <-> A e. suc B ) ) |
| 12 | 6 11 | sylbi | |- ( ( B e. On /\ -. A e. _V ) -> ( A C_ B <-> A e. suc B ) ) |
| 13 | 12 | expcom | |- ( -. A e. _V -> ( B e. On -> ( A C_ B <-> A e. suc B ) ) ) |
| 14 | 13 | adantld | |- ( -. A e. _V -> ( ( Ord A /\ B e. On ) -> ( A C_ B <-> A e. suc B ) ) ) |
| 15 | 5 14 | pm2.61i | |- ( ( Ord A /\ B e. On ) -> ( A C_ B <-> A e. suc B ) ) |