This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Identity law for isomorphism. Proposition 6.30(1) of TakeutiZaring p. 33. (Contributed by NM, 27-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isoid | |- ( _I |` A ) Isom R , R ( A , A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi | |- ( _I |` A ) : A -1-1-onto-> A |
|
| 2 | fvresi | |- ( x e. A -> ( ( _I |` A ) ` x ) = x ) |
|
| 3 | fvresi | |- ( y e. A -> ( ( _I |` A ) ` y ) = y ) |
|
| 4 | 2 3 | breqan12d | |- ( ( x e. A /\ y e. A ) -> ( ( ( _I |` A ) ` x ) R ( ( _I |` A ) ` y ) <-> x R y ) ) |
| 5 | 4 | bicomd | |- ( ( x e. A /\ y e. A ) -> ( x R y <-> ( ( _I |` A ) ` x ) R ( ( _I |` A ) ` y ) ) ) |
| 6 | 5 | rgen2 | |- A. x e. A A. y e. A ( x R y <-> ( ( _I |` A ) ` x ) R ( ( _I |` A ) ` y ) ) |
| 7 | df-isom | |- ( ( _I |` A ) Isom R , R ( A , A ) <-> ( ( _I |` A ) : A -1-1-onto-> A /\ A. x e. A A. y e. A ( x R y <-> ( ( _I |` A ) ` x ) R ( ( _I |` A ) ` y ) ) ) ) |
|
| 8 | 1 6 7 | mpbir2an | |- ( _I |` A ) Isom R , R ( A , A ) |