This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for elpreqpr . (Contributed by Scott Fenton, 7-Dec-2020) (Revised by AV, 9-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elpreqprlem | |- ( B e. V -> E. x { B , C } = { B , x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- { B , C } = { B , C } |
|
| 2 | preq2 | |- ( x = C -> { B , x } = { B , C } ) |
|
| 3 | 2 | eqeq2d | |- ( x = C -> ( { B , C } = { B , x } <-> { B , C } = { B , C } ) ) |
| 4 | 3 | spcegv | |- ( C e. _V -> ( { B , C } = { B , C } -> E. x { B , C } = { B , x } ) ) |
| 5 | 1 4 | mpi | |- ( C e. _V -> E. x { B , C } = { B , x } ) |
| 6 | 5 | a1d | |- ( C e. _V -> ( B e. V -> E. x { B , C } = { B , x } ) ) |
| 7 | dfsn2 | |- { B } = { B , B } |
|
| 8 | preq2 | |- ( x = B -> { B , x } = { B , B } ) |
|
| 9 | 8 | eqeq2d | |- ( x = B -> ( { B } = { B , x } <-> { B } = { B , B } ) ) |
| 10 | 9 | spcegv | |- ( B e. V -> ( { B } = { B , B } -> E. x { B } = { B , x } ) ) |
| 11 | 7 10 | mpi | |- ( B e. V -> E. x { B } = { B , x } ) |
| 12 | prprc2 | |- ( -. C e. _V -> { B , C } = { B } ) |
|
| 13 | 12 | eqeq1d | |- ( -. C e. _V -> ( { B , C } = { B , x } <-> { B } = { B , x } ) ) |
| 14 | 13 | exbidv | |- ( -. C e. _V -> ( E. x { B , C } = { B , x } <-> E. x { B } = { B , x } ) ) |
| 15 | 11 14 | imbitrrid | |- ( -. C e. _V -> ( B e. V -> E. x { B , C } = { B , x } ) ) |
| 16 | 6 15 | pm2.61i | |- ( B e. V -> E. x { B , C } = { B , x } ) |