This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A proper unordered pair is not an improper unordered pair. (Contributed by AV, 13-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prneprprc | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ -. C e. _V ) -> { A , B } =/= { C , D } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prnesn | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> { A , B } =/= { D } ) |
|
| 2 | 1 | adantr | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ -. C e. _V ) -> { A , B } =/= { D } ) |
| 3 | prprc1 | |- ( -. C e. _V -> { C , D } = { D } ) |
|
| 4 | 3 | neeq2d | |- ( -. C e. _V -> ( { A , B } =/= { C , D } <-> { A , B } =/= { D } ) ) |
| 5 | 4 | adantl | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ -. C e. _V ) -> ( { A , B } =/= { C , D } <-> { A , B } =/= { D } ) ) |
| 6 | 2 5 | mpbird | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ -. C e. _V ) -> { A , B } =/= { C , D } ) |