This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An unordered pair has the ordered pair property (compare opth ) under certain conditions. (Contributed by NM, 27-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | preqr1.a | |- A e. _V |
|
| preqr1.b | |- B e. _V |
||
| preq12b.c | |- C e. _V |
||
| preq12b.d | |- D e. _V |
||
| Assertion | opthpr | |- ( A =/= D -> ( { A , B } = { C , D } <-> ( A = C /\ B = D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preqr1.a | |- A e. _V |
|
| 2 | preqr1.b | |- B e. _V |
|
| 3 | preq12b.c | |- C e. _V |
|
| 4 | preq12b.d | |- D e. _V |
|
| 5 | 1 2 3 4 | preq12b | |- ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) |
| 6 | idd | |- ( A =/= D -> ( ( A = C /\ B = D ) -> ( A = C /\ B = D ) ) ) |
|
| 7 | df-ne | |- ( A =/= D <-> -. A = D ) |
|
| 8 | pm2.21 | |- ( -. A = D -> ( A = D -> ( B = C -> ( A = C /\ B = D ) ) ) ) |
|
| 9 | 7 8 | sylbi | |- ( A =/= D -> ( A = D -> ( B = C -> ( A = C /\ B = D ) ) ) ) |
| 10 | 9 | impd | |- ( A =/= D -> ( ( A = D /\ B = C ) -> ( A = C /\ B = D ) ) ) |
| 11 | 6 10 | jaod | |- ( A =/= D -> ( ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) -> ( A = C /\ B = D ) ) ) |
| 12 | orc | |- ( ( A = C /\ B = D ) -> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) |
|
| 13 | 11 12 | impbid1 | |- ( A =/= D -> ( ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) <-> ( A = C /\ B = D ) ) ) |
| 14 | 5 13 | bitrid | |- ( A =/= D -> ( { A , B } = { C , D } <-> ( A = C /\ B = D ) ) ) |