This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Justification theorem for the ordered pair definition of Felix Hausdorff in "Grundzüge der Mengenlehre" ("Basics of Set Theory"), 1914, p. 32: <. A , B >._H = { { A , O } , { B , T } } . Hausdorff used 1 and 2 instead of O and T , but actually, any two different fixed sets will do (e.g., O = (/) and T = { (/) } , see 0nep0 ). Furthermore, Hausdorff demanded that O and T are both different from A as well as B , which is actually not necessary in full extent ( A =/= T is not required). This definition is meaningful only for classes A and B that exist as sets (i.e., are not proper classes): If A and C were different proper classes ( A =/= C ), then { { A , O } , { B , T } } = { { C , O } , { D , T } <-> { { O } , { B , T } } = { { O } , { D , T } is true if B = D , but ( A = C /\ B = D ) would be false. See df-op for other ordered pair definitions. (Contributed by AV, 14-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opthhausdorff.a | |- A e. _V |
|
| opthhausdorff.b | |- B e. _V |
||
| opthhausdorff.o | |- A =/= O |
||
| opthhausdorff.n | |- B =/= O |
||
| opthhausdorff.t | |- B =/= T |
||
| opthhausdorff.1 | |- O e. _V |
||
| opthhausdorff.2 | |- T e. _V |
||
| opthhausdorff.3 | |- O =/= T |
||
| Assertion | opthhausdorff | |- ( { { A , O } , { B , T } } = { { C , O } , { D , T } } <-> ( A = C /\ B = D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opthhausdorff.a | |- A e. _V |
|
| 2 | opthhausdorff.b | |- B e. _V |
|
| 3 | opthhausdorff.o | |- A =/= O |
|
| 4 | opthhausdorff.n | |- B =/= O |
|
| 5 | opthhausdorff.t | |- B =/= T |
|
| 6 | opthhausdorff.1 | |- O e. _V |
|
| 7 | opthhausdorff.2 | |- T e. _V |
|
| 8 | opthhausdorff.3 | |- O =/= T |
|
| 9 | prex | |- { A , O } e. _V |
|
| 10 | prex | |- { B , T } e. _V |
|
| 11 | 1 6 | pm3.2i | |- ( A e. _V /\ O e. _V ) |
| 12 | 2 7 | pm3.2i | |- ( B e. _V /\ T e. _V ) |
| 13 | 11 12 | pm3.2i | |- ( ( A e. _V /\ O e. _V ) /\ ( B e. _V /\ T e. _V ) ) |
| 14 | 4 | necomi | |- O =/= B |
| 15 | 14 8 | pm3.2i | |- ( O =/= B /\ O =/= T ) |
| 16 | 15 | olci | |- ( ( A =/= B /\ A =/= T ) \/ ( O =/= B /\ O =/= T ) ) |
| 17 | prneimg | |- ( ( ( A e. _V /\ O e. _V ) /\ ( B e. _V /\ T e. _V ) ) -> ( ( ( A =/= B /\ A =/= T ) \/ ( O =/= B /\ O =/= T ) ) -> { A , O } =/= { B , T } ) ) |
|
| 18 | 13 16 17 | mp2 | |- { A , O } =/= { B , T } |
| 19 | preq12nebg | |- ( ( { A , O } e. _V /\ { B , T } e. _V /\ { A , O } =/= { B , T } ) -> ( { { A , O } , { B , T } } = { { C , O } , { D , T } } <-> ( ( { A , O } = { C , O } /\ { B , T } = { D , T } ) \/ ( { A , O } = { D , T } /\ { B , T } = { C , O } ) ) ) ) |
|
| 20 | 9 10 18 19 | mp3an | |- ( { { A , O } , { B , T } } = { { C , O } , { D , T } } <-> ( ( { A , O } = { C , O } /\ { B , T } = { D , T } ) \/ ( { A , O } = { D , T } /\ { B , T } = { C , O } ) ) ) |
| 21 | preq12nebg | |- ( ( A e. _V /\ O e. _V /\ A =/= O ) -> ( { A , O } = { C , O } <-> ( ( A = C /\ O = O ) \/ ( A = O /\ O = C ) ) ) ) |
|
| 22 | 1 6 3 21 | mp3an | |- ( { A , O } = { C , O } <-> ( ( A = C /\ O = O ) \/ ( A = O /\ O = C ) ) ) |
| 23 | preq12nebg | |- ( ( B e. _V /\ T e. _V /\ B =/= T ) -> ( { B , T } = { D , T } <-> ( ( B = D /\ T = T ) \/ ( B = T /\ T = D ) ) ) ) |
|
| 24 | 2 7 5 23 | mp3an | |- ( { B , T } = { D , T } <-> ( ( B = D /\ T = T ) \/ ( B = T /\ T = D ) ) ) |
| 25 | simpl | |- ( ( A = C /\ O = O ) -> A = C ) |
|
| 26 | simpl | |- ( ( B = D /\ T = T ) -> B = D ) |
|
| 27 | 25 26 | anim12i | |- ( ( ( A = C /\ O = O ) /\ ( B = D /\ T = T ) ) -> ( A = C /\ B = D ) ) |
| 28 | eqneqall | |- ( A = O -> ( A =/= O -> ( A = C /\ B = D ) ) ) |
|
| 29 | 3 28 | mpi | |- ( A = O -> ( A = C /\ B = D ) ) |
| 30 | 29 | adantr | |- ( ( A = O /\ O = C ) -> ( A = C /\ B = D ) ) |
| 31 | eqneqall | |- ( B = T -> ( B =/= T -> ( A = C /\ B = D ) ) ) |
|
| 32 | 5 31 | mpi | |- ( B = T -> ( A = C /\ B = D ) ) |
| 33 | 32 | adantr | |- ( ( B = T /\ T = D ) -> ( A = C /\ B = D ) ) |
| 34 | 27 30 33 | ccase2 | |- ( ( ( ( A = C /\ O = O ) \/ ( A = O /\ O = C ) ) /\ ( ( B = D /\ T = T ) \/ ( B = T /\ T = D ) ) ) -> ( A = C /\ B = D ) ) |
| 35 | 22 24 34 | syl2anb | |- ( ( { A , O } = { C , O } /\ { B , T } = { D , T } ) -> ( A = C /\ B = D ) ) |
| 36 | preq12nebg | |- ( ( A e. _V /\ O e. _V /\ A =/= O ) -> ( { A , O } = { D , T } <-> ( ( A = D /\ O = T ) \/ ( A = T /\ O = D ) ) ) ) |
|
| 37 | 1 6 3 36 | mp3an | |- ( { A , O } = { D , T } <-> ( ( A = D /\ O = T ) \/ ( A = T /\ O = D ) ) ) |
| 38 | preq12nebg | |- ( ( B e. _V /\ T e. _V /\ B =/= T ) -> ( { B , T } = { C , O } <-> ( ( B = C /\ T = O ) \/ ( B = O /\ T = C ) ) ) ) |
|
| 39 | 2 7 5 38 | mp3an | |- ( { B , T } = { C , O } <-> ( ( B = C /\ T = O ) \/ ( B = O /\ T = C ) ) ) |
| 40 | eqneqall | |- ( O = T -> ( O =/= T -> ( A = C /\ B = D ) ) ) |
|
| 41 | 8 40 | mpi | |- ( O = T -> ( A = C /\ B = D ) ) |
| 42 | 41 | adantl | |- ( ( A = D /\ O = T ) -> ( A = C /\ B = D ) ) |
| 43 | 42 | a1d | |- ( ( A = D /\ O = T ) -> ( ( ( B = C /\ T = O ) \/ ( B = O /\ T = C ) ) -> ( A = C /\ B = D ) ) ) |
| 44 | 8 | necomi | |- T =/= O |
| 45 | eqneqall | |- ( T = O -> ( T =/= O -> ( A = C /\ B = D ) ) ) |
|
| 46 | 44 45 | mpi | |- ( T = O -> ( A = C /\ B = D ) ) |
| 47 | 46 | adantl | |- ( ( B = C /\ T = O ) -> ( A = C /\ B = D ) ) |
| 48 | 47 | a1d | |- ( ( B = C /\ T = O ) -> ( ( A = T /\ O = D ) -> ( A = C /\ B = D ) ) ) |
| 49 | eqneqall | |- ( B = O -> ( B =/= O -> ( A = C /\ B = D ) ) ) |
|
| 50 | 4 49 | mpi | |- ( B = O -> ( A = C /\ B = D ) ) |
| 51 | 50 | adantr | |- ( ( B = O /\ T = C ) -> ( A = C /\ B = D ) ) |
| 52 | 51 | a1d | |- ( ( B = O /\ T = C ) -> ( ( A = T /\ O = D ) -> ( A = C /\ B = D ) ) ) |
| 53 | 48 52 | jaoi | |- ( ( ( B = C /\ T = O ) \/ ( B = O /\ T = C ) ) -> ( ( A = T /\ O = D ) -> ( A = C /\ B = D ) ) ) |
| 54 | 53 | com12 | |- ( ( A = T /\ O = D ) -> ( ( ( B = C /\ T = O ) \/ ( B = O /\ T = C ) ) -> ( A = C /\ B = D ) ) ) |
| 55 | 43 54 | jaoi | |- ( ( ( A = D /\ O = T ) \/ ( A = T /\ O = D ) ) -> ( ( ( B = C /\ T = O ) \/ ( B = O /\ T = C ) ) -> ( A = C /\ B = D ) ) ) |
| 56 | 55 | imp | |- ( ( ( ( A = D /\ O = T ) \/ ( A = T /\ O = D ) ) /\ ( ( B = C /\ T = O ) \/ ( B = O /\ T = C ) ) ) -> ( A = C /\ B = D ) ) |
| 57 | 37 39 56 | syl2anb | |- ( ( { A , O } = { D , T } /\ { B , T } = { C , O } ) -> ( A = C /\ B = D ) ) |
| 58 | 35 57 | jaoi | |- ( ( ( { A , O } = { C , O } /\ { B , T } = { D , T } ) \/ ( { A , O } = { D , T } /\ { B , T } = { C , O } ) ) -> ( A = C /\ B = D ) ) |
| 59 | 20 58 | sylbi | |- ( { { A , O } , { B , T } } = { { C , O } , { D , T } } -> ( A = C /\ B = D ) ) |
| 60 | preq1 | |- ( A = C -> { A , O } = { C , O } ) |
|
| 61 | 60 | adantr | |- ( ( A = C /\ B = D ) -> { A , O } = { C , O } ) |
| 62 | preq1 | |- ( B = D -> { B , T } = { D , T } ) |
|
| 63 | 62 | adantl | |- ( ( A = C /\ B = D ) -> { B , T } = { D , T } ) |
| 64 | 61 63 | preq12d | |- ( ( A = C /\ B = D ) -> { { A , O } , { B , T } } = { { C , O } , { D , T } } ) |
| 65 | 59 64 | impbii | |- ( { { A , O } , { B , T } } = { { C , O } , { D , T } } <-> ( A = C /\ B = D ) ) |