This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The singletons consisting of ordered triples which have distinct third components are disjoint. (Contributed by Alexander van der Vekens, 10-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | otsndisj | |- ( ( A e. X /\ B e. Y ) -> Disj_ c e. V { <. A , B , c >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | otthg | |- ( ( A e. X /\ B e. Y /\ c e. V ) -> ( <. A , B , c >. = <. A , B , d >. <-> ( A = A /\ B = B /\ c = d ) ) ) |
|
| 2 | 1 | 3expa | |- ( ( ( A e. X /\ B e. Y ) /\ c e. V ) -> ( <. A , B , c >. = <. A , B , d >. <-> ( A = A /\ B = B /\ c = d ) ) ) |
| 3 | simp3 | |- ( ( A = A /\ B = B /\ c = d ) -> c = d ) |
|
| 4 | 2 3 | biimtrdi | |- ( ( ( A e. X /\ B e. Y ) /\ c e. V ) -> ( <. A , B , c >. = <. A , B , d >. -> c = d ) ) |
| 5 | 4 | con3rr3 | |- ( -. c = d -> ( ( ( A e. X /\ B e. Y ) /\ c e. V ) -> -. <. A , B , c >. = <. A , B , d >. ) ) |
| 6 | 5 | imp | |- ( ( -. c = d /\ ( ( A e. X /\ B e. Y ) /\ c e. V ) ) -> -. <. A , B , c >. = <. A , B , d >. ) |
| 7 | 6 | neqned | |- ( ( -. c = d /\ ( ( A e. X /\ B e. Y ) /\ c e. V ) ) -> <. A , B , c >. =/= <. A , B , d >. ) |
| 8 | disjsn2 | |- ( <. A , B , c >. =/= <. A , B , d >. -> ( { <. A , B , c >. } i^i { <. A , B , d >. } ) = (/) ) |
|
| 9 | 7 8 | syl | |- ( ( -. c = d /\ ( ( A e. X /\ B e. Y ) /\ c e. V ) ) -> ( { <. A , B , c >. } i^i { <. A , B , d >. } ) = (/) ) |
| 10 | 9 | expcom | |- ( ( ( A e. X /\ B e. Y ) /\ c e. V ) -> ( -. c = d -> ( { <. A , B , c >. } i^i { <. A , B , d >. } ) = (/) ) ) |
| 11 | 10 | orrd | |- ( ( ( A e. X /\ B e. Y ) /\ c e. V ) -> ( c = d \/ ( { <. A , B , c >. } i^i { <. A , B , d >. } ) = (/) ) ) |
| 12 | 11 | adantrr | |- ( ( ( A e. X /\ B e. Y ) /\ ( c e. V /\ d e. V ) ) -> ( c = d \/ ( { <. A , B , c >. } i^i { <. A , B , d >. } ) = (/) ) ) |
| 13 | 12 | ralrimivva | |- ( ( A e. X /\ B e. Y ) -> A. c e. V A. d e. V ( c = d \/ ( { <. A , B , c >. } i^i { <. A , B , d >. } ) = (/) ) ) |
| 14 | oteq3 | |- ( c = d -> <. A , B , c >. = <. A , B , d >. ) |
|
| 15 | 14 | sneqd | |- ( c = d -> { <. A , B , c >. } = { <. A , B , d >. } ) |
| 16 | 15 | disjor | |- ( Disj_ c e. V { <. A , B , c >. } <-> A. c e. V A. d e. V ( c = d \/ ( { <. A , B , c >. } i^i { <. A , B , d >. } ) = (/) ) ) |
| 17 | 13 16 | sylibr | |- ( ( A e. X /\ B e. Y ) -> Disj_ c e. V { <. A , B , c >. } ) |