This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of indexed edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 23-Sep-2020) (Proof shortened by AV, 12-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | struct2grvtx.g | |- G = { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. } |
|
| Assertion | struct2griedg | |- ( ( V e. X /\ E e. Y ) -> ( iEdg ` G ) = E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | struct2grvtx.g | |- G = { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. } |
|
| 2 | 1 | struct2grstr | |- G Struct <. ( Base ` ndx ) , ( .ef ` ndx ) >. |
| 3 | 2 | a1i | |- ( ( V e. X /\ E e. Y ) -> G Struct <. ( Base ` ndx ) , ( .ef ` ndx ) >. ) |
| 4 | simpl | |- ( ( V e. X /\ E e. Y ) -> V e. X ) |
|
| 5 | simpr | |- ( ( V e. X /\ E e. Y ) -> E e. Y ) |
|
| 6 | 1 | eqimss2i | |- { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. } C_ G |
| 7 | 6 | a1i | |- ( ( V e. X /\ E e. Y ) -> { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. } C_ G ) |
| 8 | 3 4 5 7 | structgrssiedg | |- ( ( V e. X /\ E e. Y ) -> ( iEdg ` G ) = E ) |