This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bidirectional form of oppgmnd . (Contributed by Stefan O'Rear, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppgbas.1 | |- O = ( oppG ` R ) |
|
| Assertion | oppgmndb | |- ( R e. Mnd <-> O e. Mnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgbas.1 | |- O = ( oppG ` R ) |
|
| 2 | 1 | oppgmnd | |- ( R e. Mnd -> O e. Mnd ) |
| 3 | eqid | |- ( oppG ` O ) = ( oppG ` O ) |
|
| 4 | 3 | oppgmnd | |- ( O e. Mnd -> ( oppG ` O ) e. Mnd ) |
| 5 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 6 | 1 5 | oppgbas | |- ( Base ` R ) = ( Base ` O ) |
| 7 | 3 6 | oppgbas | |- ( Base ` R ) = ( Base ` ( oppG ` O ) ) |
| 8 | 7 | a1i | |- ( T. -> ( Base ` R ) = ( Base ` ( oppG ` O ) ) ) |
| 9 | eqidd | |- ( T. -> ( Base ` R ) = ( Base ` R ) ) |
|
| 10 | eqid | |- ( +g ` O ) = ( +g ` O ) |
|
| 11 | eqid | |- ( +g ` ( oppG ` O ) ) = ( +g ` ( oppG ` O ) ) |
|
| 12 | 10 3 11 | oppgplus | |- ( x ( +g ` ( oppG ` O ) ) y ) = ( y ( +g ` O ) x ) |
| 13 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 14 | 13 1 10 | oppgplus | |- ( y ( +g ` O ) x ) = ( x ( +g ` R ) y ) |
| 15 | 12 14 | eqtri | |- ( x ( +g ` ( oppG ` O ) ) y ) = ( x ( +g ` R ) y ) |
| 16 | 15 | a1i | |- ( ( T. /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( +g ` ( oppG ` O ) ) y ) = ( x ( +g ` R ) y ) ) |
| 17 | 8 9 16 | mndpropd | |- ( T. -> ( ( oppG ` O ) e. Mnd <-> R e. Mnd ) ) |
| 18 | 17 | mptru | |- ( ( oppG ` O ) e. Mnd <-> R e. Mnd ) |
| 19 | 4 18 | sylib | |- ( O e. Mnd -> R e. Mnd ) |
| 20 | 2 19 | impbii | |- ( R e. Mnd <-> O e. Mnd ) |