This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite of a group is a group. (Contributed by Stefan O'Rear, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppgbas.1 | ||
| Assertion | oppggrp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgbas.1 | ||
| 2 | eqid | ||
| 3 | 1 2 | oppgbas | |
| 4 | 3 | a1i | |
| 5 | eqidd | ||
| 6 | eqid | ||
| 7 | 1 6 | oppgid | |
| 8 | 7 | a1i | |
| 9 | grpmnd | ||
| 10 | 1 | oppgmnd | |
| 11 | 9 10 | syl | |
| 12 | eqid | ||
| 13 | 2 12 | grpinvcl | |
| 14 | eqid | ||
| 15 | eqid | ||
| 16 | 14 1 15 | oppgplus | |
| 17 | 2 14 6 12 | grprinv | |
| 18 | 16 17 | eqtrid | |
| 19 | 4 5 8 11 13 18 | isgrpd2 |