This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The universal property for the universal pair <. X , M >. from a functor to an object, expressed explicitly. (Contributed by Zhi Wang, 4-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcup2.b | |- B = ( Base ` D ) |
|
| oppcup2.h | |- H = ( Hom ` D ) |
||
| oppcup2.j | |- J = ( Hom ` E ) |
||
| oppcup2.xb | |- .xb = ( comp ` E ) |
||
| oppcup2.o | |- O = ( oppCat ` D ) |
||
| oppcup2.p | |- P = ( oppCat ` E ) |
||
| oppcup2.f | |- ( ph -> F ( D Func E ) G ) |
||
| oppcup2.x | |- ( ph -> X ( <. F , tpos G >. ( O UP P ) W ) M ) |
||
| Assertion | oppcup2 | |- ( ph -> A. y e. B A. g e. ( ( F ` y ) J W ) E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcup2.b | |- B = ( Base ` D ) |
|
| 2 | oppcup2.h | |- H = ( Hom ` D ) |
|
| 3 | oppcup2.j | |- J = ( Hom ` E ) |
|
| 4 | oppcup2.xb | |- .xb = ( comp ` E ) |
|
| 5 | oppcup2.o | |- O = ( oppCat ` D ) |
|
| 6 | oppcup2.p | |- P = ( oppCat ` E ) |
|
| 7 | oppcup2.f | |- ( ph -> F ( D Func E ) G ) |
|
| 8 | oppcup2.x | |- ( ph -> X ( <. F , tpos G >. ( O UP P ) W ) M ) |
|
| 9 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 10 | 8 6 9 | oppcuprcl3 | |- ( ph -> W e. ( Base ` E ) ) |
| 11 | 8 5 1 | oppcuprcl4 | |- ( ph -> X e. B ) |
| 12 | 8 6 3 | oppcuprcl5 | |- ( ph -> M e. ( ( F ` X ) J W ) ) |
| 13 | 1 9 2 3 4 10 7 11 12 5 6 | oppcup | |- ( ph -> ( X ( <. F , tpos G >. ( O UP P ) W ) M <-> A. y e. B A. g e. ( ( F ` y ) J W ) E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) ) |
| 14 | 8 13 | mpbid | |- ( ph -> A. y e. B A. g e. ( ( F ` y ) J W ) E! k e. ( y H X ) g = ( M ( <. ( F ` y ) , ( F ` X ) >. .xb W ) ( ( y G X ) ` k ) ) ) |