This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invfval.b | |- B = ( Base ` C ) |
|
| invfval.n | |- N = ( Inv ` C ) |
||
| invfval.c | |- ( ph -> C e. Cat ) |
||
| invfval.x | |- ( ph -> X e. B ) |
||
| invfval.y | |- ( ph -> Y e. B ) |
||
| invfval.s | |- S = ( Sect ` C ) |
||
| Assertion | invfval | |- ( ph -> ( X N Y ) = ( ( X S Y ) i^i `' ( Y S X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | |- B = ( Base ` C ) |
|
| 2 | invfval.n | |- N = ( Inv ` C ) |
|
| 3 | invfval.c | |- ( ph -> C e. Cat ) |
|
| 4 | invfval.x | |- ( ph -> X e. B ) |
|
| 5 | invfval.y | |- ( ph -> Y e. B ) |
|
| 6 | invfval.s | |- S = ( Sect ` C ) |
|
| 7 | 1 2 3 6 | invffval | |- ( ph -> N = ( x e. B , y e. B |-> ( ( x S y ) i^i `' ( y S x ) ) ) ) |
| 8 | simprl | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> x = X ) |
|
| 9 | simprr | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> y = Y ) |
|
| 10 | 8 9 | oveq12d | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( x S y ) = ( X S Y ) ) |
| 11 | 9 8 | oveq12d | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( y S x ) = ( Y S X ) ) |
| 12 | 11 | cnveqd | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> `' ( y S x ) = `' ( Y S X ) ) |
| 13 | 10 12 | ineq12d | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( ( x S y ) i^i `' ( y S x ) ) = ( ( X S Y ) i^i `' ( Y S X ) ) ) |
| 14 | ovex | |- ( X S Y ) e. _V |
|
| 15 | 14 | inex1 | |- ( ( X S Y ) i^i `' ( Y S X ) ) e. _V |
| 16 | 15 | a1i | |- ( ph -> ( ( X S Y ) i^i `' ( Y S X ) ) e. _V ) |
| 17 | 7 13 4 5 16 | ovmpod | |- ( ph -> ( X N Y ) = ( ( X S Y ) i^i `' ( Y S X ) ) ) |