This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hom-sets of the opposite category. (Contributed by Mario Carneiro, 17-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcbas.1 | |- O = ( oppCat ` C ) |
|
| oppchomf.h | |- H = ( Homf ` C ) |
||
| Assertion | oppchomf | |- tpos H = ( Homf ` O ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcbas.1 | |- O = ( oppCat ` C ) |
|
| 2 | oppchomf.h | |- H = ( Homf ` C ) |
|
| 3 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 4 | 3 1 | oppchom | |- ( y ( Hom ` O ) x ) = ( x ( Hom ` C ) y ) |
| 5 | 4 | a1i | |- ( ( y e. ( Base ` C ) /\ x e. ( Base ` C ) ) -> ( y ( Hom ` O ) x ) = ( x ( Hom ` C ) y ) ) |
| 6 | 5 | mpoeq3ia | |- ( y e. ( Base ` C ) , x e. ( Base ` C ) |-> ( y ( Hom ` O ) x ) ) = ( y e. ( Base ` C ) , x e. ( Base ` C ) |-> ( x ( Hom ` C ) y ) ) |
| 7 | eqid | |- ( Homf ` O ) = ( Homf ` O ) |
|
| 8 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 9 | 1 8 | oppcbas | |- ( Base ` C ) = ( Base ` O ) |
| 10 | eqid | |- ( Hom ` O ) = ( Hom ` O ) |
|
| 11 | 7 9 10 | homffval | |- ( Homf ` O ) = ( y e. ( Base ` C ) , x e. ( Base ` C ) |-> ( y ( Hom ` O ) x ) ) |
| 12 | 2 8 3 | homffval | |- H = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( Hom ` C ) y ) ) |
| 13 | 12 | tposmpo | |- tpos H = ( y e. ( Base ` C ) , x e. ( Base ` C ) |-> ( x ( Hom ` C ) y ) ) |
| 14 | 6 11 13 | 3eqtr4ri | |- tpos H = ( Homf ` O ) |