This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say a function is symmetric. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tpossym | |- ( F Fn ( A X. A ) -> ( tpos F = F <-> A. x e. A A. y e. A ( x F y ) = ( y F x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposfn | |- ( F Fn ( A X. A ) -> tpos F Fn ( A X. A ) ) |
|
| 2 | eqfnov2 | |- ( ( tpos F Fn ( A X. A ) /\ F Fn ( A X. A ) ) -> ( tpos F = F <-> A. x e. A A. y e. A ( x tpos F y ) = ( x F y ) ) ) |
|
| 3 | 1 2 | mpancom | |- ( F Fn ( A X. A ) -> ( tpos F = F <-> A. x e. A A. y e. A ( x tpos F y ) = ( x F y ) ) ) |
| 4 | eqcom | |- ( ( x tpos F y ) = ( x F y ) <-> ( x F y ) = ( x tpos F y ) ) |
|
| 5 | ovtpos | |- ( x tpos F y ) = ( y F x ) |
|
| 6 | 5 | eqeq2i | |- ( ( x F y ) = ( x tpos F y ) <-> ( x F y ) = ( y F x ) ) |
| 7 | 4 6 | bitri | |- ( ( x tpos F y ) = ( x F y ) <-> ( x F y ) = ( y F x ) ) |
| 8 | 7 | 2ralbii | |- ( A. x e. A A. y e. A ( x tpos F y ) = ( x F y ) <-> A. x e. A A. y e. A ( x F y ) = ( y F x ) ) |
| 9 | 3 8 | bitrdi | |- ( F Fn ( A X. A ) -> ( tpos F = F <-> A. x e. A A. y e. A ( x F y ) = ( y F x ) ) ) |