This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence for an ordered pair equal to a singleton of an ordered pair. (Contributed by AV, 18-Sep-2020) (Revised by AV, 15-Jul-2022) (Avoid depending on this detail.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | snopeqop.a | |- A e. _V |
|
| snopeqop.b | |- B e. _V |
||
| Assertion | snopeqop | |- ( { <. A , B >. } = <. C , D >. <-> ( A = B /\ C = D /\ C = { A } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snopeqop.a | |- A e. _V |
|
| 2 | snopeqop.b | |- B e. _V |
|
| 3 | eqcom | |- ( { <. A , B >. } = <. C , D >. <-> <. C , D >. = { <. A , B >. } ) |
|
| 4 | opeqsng | |- ( ( C e. _V /\ D e. _V ) -> ( <. C , D >. = { <. A , B >. } <-> ( C = D /\ <. A , B >. = { C } ) ) ) |
|
| 5 | 4 | ancoms | |- ( ( D e. _V /\ C e. _V ) -> ( <. C , D >. = { <. A , B >. } <-> ( C = D /\ <. A , B >. = { C } ) ) ) |
| 6 | 3 5 | bitrid | |- ( ( D e. _V /\ C e. _V ) -> ( { <. A , B >. } = <. C , D >. <-> ( C = D /\ <. A , B >. = { C } ) ) ) |
| 7 | 1 2 | opeqsn | |- ( <. A , B >. = { C } <-> ( A = B /\ C = { A } ) ) |
| 8 | 7 | a1i | |- ( ( D e. _V /\ C e. _V ) -> ( <. A , B >. = { C } <-> ( A = B /\ C = { A } ) ) ) |
| 9 | 8 | anbi2d | |- ( ( D e. _V /\ C e. _V ) -> ( ( C = D /\ <. A , B >. = { C } ) <-> ( C = D /\ ( A = B /\ C = { A } ) ) ) ) |
| 10 | 3anan12 | |- ( ( A = B /\ C = D /\ C = { A } ) <-> ( C = D /\ ( A = B /\ C = { A } ) ) ) |
|
| 11 | 10 | bicomi | |- ( ( C = D /\ ( A = B /\ C = { A } ) ) <-> ( A = B /\ C = D /\ C = { A } ) ) |
| 12 | 11 | a1i | |- ( ( D e. _V /\ C e. _V ) -> ( ( C = D /\ ( A = B /\ C = { A } ) ) <-> ( A = B /\ C = D /\ C = { A } ) ) ) |
| 13 | 6 9 12 | 3bitrd | |- ( ( D e. _V /\ C e. _V ) -> ( { <. A , B >. } = <. C , D >. <-> ( A = B /\ C = D /\ C = { A } ) ) ) |
| 14 | opprc2 | |- ( -. D e. _V -> <. C , D >. = (/) ) |
|
| 15 | 14 | eqeq2d | |- ( -. D e. _V -> ( { <. A , B >. } = <. C , D >. <-> { <. A , B >. } = (/) ) ) |
| 16 | opex | |- <. A , B >. e. _V |
|
| 17 | 16 | snnz | |- { <. A , B >. } =/= (/) |
| 18 | eqneqall | |- ( { <. A , B >. } = (/) -> ( { <. A , B >. } =/= (/) -> ( A = B /\ C = D /\ C = { A } ) ) ) |
|
| 19 | 17 18 | mpi | |- ( { <. A , B >. } = (/) -> ( A = B /\ C = D /\ C = { A } ) ) |
| 20 | 15 19 | biimtrdi | |- ( -. D e. _V -> ( { <. A , B >. } = <. C , D >. -> ( A = B /\ C = D /\ C = { A } ) ) ) |
| 21 | 20 | adantr | |- ( ( -. D e. _V /\ C e. _V ) -> ( { <. A , B >. } = <. C , D >. -> ( A = B /\ C = D /\ C = { A } ) ) ) |
| 22 | eleq1 | |- ( D = C -> ( D e. _V <-> C e. _V ) ) |
|
| 23 | 22 | notbid | |- ( D = C -> ( -. D e. _V <-> -. C e. _V ) ) |
| 24 | 23 | eqcoms | |- ( C = D -> ( -. D e. _V <-> -. C e. _V ) ) |
| 25 | pm2.21 | |- ( -. C e. _V -> ( C e. _V -> { <. A , B >. } = <. C , D >. ) ) |
|
| 26 | 24 25 | biimtrdi | |- ( C = D -> ( -. D e. _V -> ( C e. _V -> { <. A , B >. } = <. C , D >. ) ) ) |
| 27 | 26 | impd | |- ( C = D -> ( ( -. D e. _V /\ C e. _V ) -> { <. A , B >. } = <. C , D >. ) ) |
| 28 | 27 | 3ad2ant2 | |- ( ( A = B /\ C = D /\ C = { A } ) -> ( ( -. D e. _V /\ C e. _V ) -> { <. A , B >. } = <. C , D >. ) ) |
| 29 | 28 | com12 | |- ( ( -. D e. _V /\ C e. _V ) -> ( ( A = B /\ C = D /\ C = { A } ) -> { <. A , B >. } = <. C , D >. ) ) |
| 30 | 21 29 | impbid | |- ( ( -. D e. _V /\ C e. _V ) -> ( { <. A , B >. } = <. C , D >. <-> ( A = B /\ C = D /\ C = { A } ) ) ) |
| 31 | 13 30 | pm2.61ian | |- ( C e. _V -> ( { <. A , B >. } = <. C , D >. <-> ( A = B /\ C = D /\ C = { A } ) ) ) |
| 32 | opprc1 | |- ( -. C e. _V -> <. C , D >. = (/) ) |
|
| 33 | 32 | eqeq2d | |- ( -. C e. _V -> ( { <. A , B >. } = <. C , D >. <-> { <. A , B >. } = (/) ) ) |
| 34 | 33 19 | biimtrdi | |- ( -. C e. _V -> ( { <. A , B >. } = <. C , D >. -> ( A = B /\ C = D /\ C = { A } ) ) ) |
| 35 | eleq1 | |- ( C = { A } -> ( C e. _V <-> { A } e. _V ) ) |
|
| 36 | 35 | notbid | |- ( C = { A } -> ( -. C e. _V <-> -. { A } e. _V ) ) |
| 37 | snex | |- { A } e. _V |
|
| 38 | 37 | pm2.24i | |- ( -. { A } e. _V -> { <. A , B >. } = <. C , D >. ) |
| 39 | 36 38 | biimtrdi | |- ( C = { A } -> ( -. C e. _V -> { <. A , B >. } = <. C , D >. ) ) |
| 40 | 39 | 3ad2ant3 | |- ( ( A = B /\ C = D /\ C = { A } ) -> ( -. C e. _V -> { <. A , B >. } = <. C , D >. ) ) |
| 41 | 40 | com12 | |- ( -. C e. _V -> ( ( A = B /\ C = D /\ C = { A } ) -> { <. A , B >. } = <. C , D >. ) ) |
| 42 | 34 41 | impbid | |- ( -. C e. _V -> ( { <. A , B >. } = <. C , D >. <-> ( A = B /\ C = D /\ C = { A } ) ) ) |
| 43 | 31 42 | pm2.61i | |- ( { <. A , B >. } = <. C , D >. <-> ( A = B /\ C = D /\ C = { A } ) ) |