This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function whose value is "the unique y such that ph ( x , y ) ". (Contributed by NM, 16-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opabiota.1 | |- F = { <. x , y >. | { y | ph } = { y } } |
|
| opabiota.2 | |- ( x = B -> ( ph <-> ps ) ) |
||
| Assertion | opabiota | |- ( B e. dom F -> ( F ` B ) = ( iota y ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabiota.1 | |- F = { <. x , y >. | { y | ph } = { y } } |
|
| 2 | opabiota.2 | |- ( x = B -> ( ph <-> ps ) ) |
|
| 3 | fveq2 | |- ( x = B -> ( F ` x ) = ( F ` B ) ) |
|
| 4 | 2 | iotabidv | |- ( x = B -> ( iota y ph ) = ( iota y ps ) ) |
| 5 | 3 4 | eqeq12d | |- ( x = B -> ( ( F ` x ) = ( iota y ph ) <-> ( F ` B ) = ( iota y ps ) ) ) |
| 6 | vex | |- x e. _V |
|
| 7 | 6 | eldm | |- ( x e. dom F <-> E. y x F y ) |
| 8 | nfiota1 | |- F/_ y ( iota y ph ) |
|
| 9 | 8 | nfeq2 | |- F/ y ( F ` x ) = ( iota y ph ) |
| 10 | 1 | opabiotafun | |- Fun F |
| 11 | funbrfv | |- ( Fun F -> ( x F y -> ( F ` x ) = y ) ) |
|
| 12 | 10 11 | ax-mp | |- ( x F y -> ( F ` x ) = y ) |
| 13 | df-br | |- ( x F y <-> <. x , y >. e. F ) |
|
| 14 | 1 | eleq2i | |- ( <. x , y >. e. F <-> <. x , y >. e. { <. x , y >. | { y | ph } = { y } } ) |
| 15 | opabidw | |- ( <. x , y >. e. { <. x , y >. | { y | ph } = { y } } <-> { y | ph } = { y } ) |
|
| 16 | 13 14 15 | 3bitri | |- ( x F y <-> { y | ph } = { y } ) |
| 17 | vsnid | |- y e. { y } |
|
| 18 | id | |- ( { y | ph } = { y } -> { y | ph } = { y } ) |
|
| 19 | 17 18 | eleqtrrid | |- ( { y | ph } = { y } -> y e. { y | ph } ) |
| 20 | abid | |- ( y e. { y | ph } <-> ph ) |
|
| 21 | 19 20 | sylib | |- ( { y | ph } = { y } -> ph ) |
| 22 | 16 21 | sylbi | |- ( x F y -> ph ) |
| 23 | vex | |- y e. _V |
|
| 24 | 6 23 | breldm | |- ( x F y -> x e. dom F ) |
| 25 | 1 | opabiotadm | |- dom F = { x | E! y ph } |
| 26 | 25 | eqabri | |- ( x e. dom F <-> E! y ph ) |
| 27 | 24 26 | sylib | |- ( x F y -> E! y ph ) |
| 28 | iota1 | |- ( E! y ph -> ( ph <-> ( iota y ph ) = y ) ) |
|
| 29 | 27 28 | syl | |- ( x F y -> ( ph <-> ( iota y ph ) = y ) ) |
| 30 | 22 29 | mpbid | |- ( x F y -> ( iota y ph ) = y ) |
| 31 | 12 30 | eqtr4d | |- ( x F y -> ( F ` x ) = ( iota y ph ) ) |
| 32 | 9 31 | exlimi | |- ( E. y x F y -> ( F ` x ) = ( iota y ph ) ) |
| 33 | 7 32 | sylbi | |- ( x e. dom F -> ( F ` x ) = ( iota y ph ) ) |
| 34 | 5 33 | vtoclga | |- ( B e. dom F -> ( F ` B ) = ( iota y ps ) ) |