This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function whose value is "the unique y such that ph ( x , y ) ". (Contributed by NM, 19-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opabiota.1 | |- F = { <. x , y >. | { y | ph } = { y } } |
|
| Assertion | opabiotafun | |- Fun F |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabiota.1 | |- F = { <. x , y >. | { y | ph } = { y } } |
|
| 2 | funopab | |- ( Fun { <. x , y >. | { y | ph } = { y } } <-> A. x E* y { y | ph } = { y } ) |
|
| 3 | mo2icl | |- ( A. z ( { y | ph } = { z } -> z = U. { y | ph } ) -> E* z { y | ph } = { z } ) |
|
| 4 | unieq | |- ( { y | ph } = { z } -> U. { y | ph } = U. { z } ) |
|
| 5 | unisnv | |- U. { z } = z |
|
| 6 | 4 5 | eqtr2di | |- ( { y | ph } = { z } -> z = U. { y | ph } ) |
| 7 | 3 6 | mpg | |- E* z { y | ph } = { z } |
| 8 | nfv | |- F/ z { y | ph } = { y } |
|
| 9 | nfab1 | |- F/_ y { y | ph } |
|
| 10 | 9 | nfeq1 | |- F/ y { y | ph } = { z } |
| 11 | sneq | |- ( y = z -> { y } = { z } ) |
|
| 12 | 11 | eqeq2d | |- ( y = z -> ( { y | ph } = { y } <-> { y | ph } = { z } ) ) |
| 13 | 8 10 12 | cbvmow | |- ( E* y { y | ph } = { y } <-> E* z { y | ph } = { z } ) |
| 14 | 7 13 | mpbir | |- E* y { y | ph } = { y } |
| 15 | 2 14 | mpgbir | |- Fun { <. x , y >. | { y | ph } = { y } } |
| 16 | 1 | funeqi | |- ( Fun F <-> Fun { <. x , y >. | { y | ph } = { y } } ) |
| 17 | 15 16 | mpbir | |- Fun F |