This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function whose value is "the unique y such that ph ( x , y ) ". (Contributed by NM, 16-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opabiota.1 | ⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ { 𝑦 ∣ 𝜑 } = { 𝑦 } } | |
| opabiota.2 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | opabiota | ⊢ ( 𝐵 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐵 ) = ( ℩ 𝑦 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabiota.1 | ⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ { 𝑦 ∣ 𝜑 } = { 𝑦 } } | |
| 2 | opabiota.2 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | fveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐵 ) ) | |
| 4 | 2 | iotabidv | ⊢ ( 𝑥 = 𝐵 → ( ℩ 𝑦 𝜑 ) = ( ℩ 𝑦 𝜓 ) ) |
| 5 | 3 4 | eqeq12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 ‘ 𝑥 ) = ( ℩ 𝑦 𝜑 ) ↔ ( 𝐹 ‘ 𝐵 ) = ( ℩ 𝑦 𝜓 ) ) ) |
| 6 | vex | ⊢ 𝑥 ∈ V | |
| 7 | 6 | eldm | ⊢ ( 𝑥 ∈ dom 𝐹 ↔ ∃ 𝑦 𝑥 𝐹 𝑦 ) |
| 8 | nfiota1 | ⊢ Ⅎ 𝑦 ( ℩ 𝑦 𝜑 ) | |
| 9 | 8 | nfeq2 | ⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑥 ) = ( ℩ 𝑦 𝜑 ) |
| 10 | 1 | opabiotafun | ⊢ Fun 𝐹 |
| 11 | funbrfv | ⊢ ( Fun 𝐹 → ( 𝑥 𝐹 𝑦 → ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) | |
| 12 | 10 11 | ax-mp | ⊢ ( 𝑥 𝐹 𝑦 → ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
| 13 | df-br | ⊢ ( 𝑥 𝐹 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) | |
| 14 | 1 | eleq2i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ↔ 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ { 𝑦 ∣ 𝜑 } = { 𝑦 } } ) |
| 15 | opabidw | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ { 𝑦 ∣ 𝜑 } = { 𝑦 } } ↔ { 𝑦 ∣ 𝜑 } = { 𝑦 } ) | |
| 16 | 13 14 15 | 3bitri | ⊢ ( 𝑥 𝐹 𝑦 ↔ { 𝑦 ∣ 𝜑 } = { 𝑦 } ) |
| 17 | vsnid | ⊢ 𝑦 ∈ { 𝑦 } | |
| 18 | id | ⊢ ( { 𝑦 ∣ 𝜑 } = { 𝑦 } → { 𝑦 ∣ 𝜑 } = { 𝑦 } ) | |
| 19 | 17 18 | eleqtrrid | ⊢ ( { 𝑦 ∣ 𝜑 } = { 𝑦 } → 𝑦 ∈ { 𝑦 ∣ 𝜑 } ) |
| 20 | abid | ⊢ ( 𝑦 ∈ { 𝑦 ∣ 𝜑 } ↔ 𝜑 ) | |
| 21 | 19 20 | sylib | ⊢ ( { 𝑦 ∣ 𝜑 } = { 𝑦 } → 𝜑 ) |
| 22 | 16 21 | sylbi | ⊢ ( 𝑥 𝐹 𝑦 → 𝜑 ) |
| 23 | vex | ⊢ 𝑦 ∈ V | |
| 24 | 6 23 | breldm | ⊢ ( 𝑥 𝐹 𝑦 → 𝑥 ∈ dom 𝐹 ) |
| 25 | 1 | opabiotadm | ⊢ dom 𝐹 = { 𝑥 ∣ ∃! 𝑦 𝜑 } |
| 26 | 25 | eqabri | ⊢ ( 𝑥 ∈ dom 𝐹 ↔ ∃! 𝑦 𝜑 ) |
| 27 | 24 26 | sylib | ⊢ ( 𝑥 𝐹 𝑦 → ∃! 𝑦 𝜑 ) |
| 28 | iota1 | ⊢ ( ∃! 𝑦 𝜑 → ( 𝜑 ↔ ( ℩ 𝑦 𝜑 ) = 𝑦 ) ) | |
| 29 | 27 28 | syl | ⊢ ( 𝑥 𝐹 𝑦 → ( 𝜑 ↔ ( ℩ 𝑦 𝜑 ) = 𝑦 ) ) |
| 30 | 22 29 | mpbid | ⊢ ( 𝑥 𝐹 𝑦 → ( ℩ 𝑦 𝜑 ) = 𝑦 ) |
| 31 | 12 30 | eqtr4d | ⊢ ( 𝑥 𝐹 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( ℩ 𝑦 𝜑 ) ) |
| 32 | 9 31 | exlimi | ⊢ ( ∃ 𝑦 𝑥 𝐹 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( ℩ 𝑦 𝜑 ) ) |
| 33 | 7 32 | sylbi | ⊢ ( 𝑥 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑥 ) = ( ℩ 𝑦 𝜑 ) ) |
| 34 | 5 33 | vtoclga | ⊢ ( 𝐵 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐵 ) = ( ℩ 𝑦 𝜓 ) ) |