This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf has implicit substitution). The hypothesis specifies that x must not be a free variable in B . (Contributed by NM, 30-Sep-2003) (Proof shortened by Mario Carneiro, 13-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elrabsf.1 | |- F/_ x B |
|
| Assertion | elrabsf | |- ( A e. { x e. B | ph } <-> ( A e. B /\ [. A / x ]. ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrabsf.1 | |- F/_ x B |
|
| 2 | dfsbcq | |- ( y = A -> ( [. y / x ]. ph <-> [. A / x ]. ph ) ) |
|
| 3 | nfcv | |- F/_ y B |
|
| 4 | nfv | |- F/ y ph |
|
| 5 | nfsbc1v | |- F/ x [. y / x ]. ph |
|
| 6 | sbceq1a | |- ( x = y -> ( ph <-> [. y / x ]. ph ) ) |
|
| 7 | 1 3 4 5 6 | cbvrabw | |- { x e. B | ph } = { y e. B | [. y / x ]. ph } |
| 8 | 2 7 | elrab2 | |- ( A e. { x e. B | ph } <-> ( A e. B /\ [. A / x ]. ph ) ) |