This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a class of ordinal numbers is zero iff the class contains zero. (Contributed by NM, 24-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onint0 | |- ( A C_ On -> ( |^| A = (/) <-> (/) e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | |- (/) e. _V |
|
| 2 | eleq1 | |- ( |^| A = (/) -> ( |^| A e. _V <-> (/) e. _V ) ) |
|
| 3 | 1 2 | mpbiri | |- ( |^| A = (/) -> |^| A e. _V ) |
| 4 | intex | |- ( A =/= (/) <-> |^| A e. _V ) |
|
| 5 | 3 4 | sylibr | |- ( |^| A = (/) -> A =/= (/) ) |
| 6 | onint | |- ( ( A C_ On /\ A =/= (/) ) -> |^| A e. A ) |
|
| 7 | 5 6 | sylan2 | |- ( ( A C_ On /\ |^| A = (/) ) -> |^| A e. A ) |
| 8 | eleq1 | |- ( |^| A = (/) -> ( |^| A e. A <-> (/) e. A ) ) |
|
| 9 | 8 | adantl | |- ( ( A C_ On /\ |^| A = (/) ) -> ( |^| A e. A <-> (/) e. A ) ) |
| 10 | 7 9 | mpbid | |- ( ( A C_ On /\ |^| A = (/) ) -> (/) e. A ) |
| 11 | 10 | ex | |- ( A C_ On -> ( |^| A = (/) -> (/) e. A ) ) |
| 12 | int0el | |- ( (/) e. A -> |^| A = (/) ) |
|
| 13 | 11 12 | impbid1 | |- ( A C_ On -> ( |^| A = (/) <-> (/) e. A ) ) |