This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponentiation with a successor exponent. Definition 8.30 of TakeutiZaring p. 67. (Contributed by Mario Carneiro, 14-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onesuc | |- ( ( A e. On /\ B e. _om ) -> ( A ^o suc B ) = ( ( A ^o B ) .o A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limom | |- Lim _om |
|
| 2 | frsuc | |- ( B e. _om -> ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) |` _om ) ` suc B ) = ( ( x e. _V |-> ( x .o A ) ) ` ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) |` _om ) ` B ) ) ) |
|
| 3 | peano2 | |- ( B e. _om -> suc B e. _om ) |
|
| 4 | 3 | fvresd | |- ( B e. _om -> ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) |` _om ) ` suc B ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` suc B ) ) |
| 5 | fvres | |- ( B e. _om -> ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) |` _om ) ` B ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) |
|
| 6 | 5 | fveq2d | |- ( B e. _om -> ( ( x e. _V |-> ( x .o A ) ) ` ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) |` _om ) ` B ) ) = ( ( x e. _V |-> ( x .o A ) ) ` ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) ) |
| 7 | 2 4 6 | 3eqtr3d | |- ( B e. _om -> ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` suc B ) = ( ( x e. _V |-> ( x .o A ) ) ` ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) ) |
| 8 | 1 7 | oesuclem | |- ( ( A e. On /\ B e. _om ) -> ( A ^o suc B ) = ( ( A ^o B ) .o A ) ) |