This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponentiation with a successor exponent. Definition 8.30 of TakeutiZaring p. 67. (Contributed by Mario Carneiro, 14-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onesuc | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ↑o suc 𝐵 ) = ( ( 𝐴 ↑o 𝐵 ) ·o 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limom | ⊢ Lim ω | |
| 2 | frsuc | ⊢ ( 𝐵 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ↾ ω ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) ‘ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ↾ ω ) ‘ 𝐵 ) ) ) | |
| 3 | peano2 | ⊢ ( 𝐵 ∈ ω → suc 𝐵 ∈ ω ) | |
| 4 | 3 | fvresd | ⊢ ( 𝐵 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ↾ ω ) ‘ suc 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ suc 𝐵 ) ) |
| 5 | fvres | ⊢ ( 𝐵 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ↾ ω ) ‘ 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ) | |
| 6 | 5 | fveq2d | ⊢ ( 𝐵 ∈ ω → ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) ‘ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ↾ ω ) ‘ 𝐵 ) ) = ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) ‘ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ) ) |
| 7 | 2 4 6 | 3eqtr3d | ⊢ ( 𝐵 ∈ ω → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) ‘ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ) ) |
| 8 | 1 7 | oesuclem | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 ↑o suc 𝐵 ) = ( ( 𝐴 ↑o 𝐵 ) ·o 𝐴 ) ) |