This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A way to show that an ordinal number equals the minimum of a collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oneqmini |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssint | ||
| 2 | ssel | ||
| 3 | ssel | ||
| 4 | 2 3 | anim12d | |
| 5 | ontri1 | ||
| 6 | 4 5 | syl6 | |
| 7 | 6 | expdimp | |
| 8 | 7 | pm5.74d | |
| 9 | con2b | ||
| 10 | 8 9 | bitrdi | |
| 11 | 10 | ralbidv2 | |
| 12 | 1 11 | bitrid | |
| 13 | 12 | biimprd | |
| 14 | 13 | expimpd | |
| 15 | intss1 | ||
| 16 | 15 | a1i | |
| 17 | 16 | adantrd | |
| 18 | 14 17 | jcad | |
| 19 | eqss | ||
| 20 | 18 19 | imbitrrdi |