This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Variation of orthomodular law. Definition of OML law in Kalmbach p. 22. ( pjoml2i analog.) (Contributed by NM, 6-Nov-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omllaw.b | |- B = ( Base ` K ) |
|
| omllaw.l | |- .<_ = ( le ` K ) |
||
| omllaw.j | |- .\/ = ( join ` K ) |
||
| omllaw.m | |- ./\ = ( meet ` K ) |
||
| omllaw.o | |- ._|_ = ( oc ` K ) |
||
| Assertion | omllaw2N | |- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X .<_ Y -> ( X .\/ ( ( ._|_ ` X ) ./\ Y ) ) = Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omllaw.b | |- B = ( Base ` K ) |
|
| 2 | omllaw.l | |- .<_ = ( le ` K ) |
|
| 3 | omllaw.j | |- .\/ = ( join ` K ) |
|
| 4 | omllaw.m | |- ./\ = ( meet ` K ) |
|
| 5 | omllaw.o | |- ._|_ = ( oc ` K ) |
|
| 6 | 1 2 3 4 5 | omllaw | |- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X .<_ Y -> Y = ( X .\/ ( Y ./\ ( ._|_ ` X ) ) ) ) ) |
| 7 | eqcom | |- ( ( X .\/ ( ( ._|_ ` X ) ./\ Y ) ) = Y <-> Y = ( X .\/ ( ( ._|_ ` X ) ./\ Y ) ) ) |
|
| 8 | omllat | |- ( K e. OML -> K e. Lat ) |
|
| 9 | 8 | 3ad2ant1 | |- ( ( K e. OML /\ X e. B /\ Y e. B ) -> K e. Lat ) |
| 10 | omlop | |- ( K e. OML -> K e. OP ) |
|
| 11 | 1 5 | opoccl | |- ( ( K e. OP /\ X e. B ) -> ( ._|_ ` X ) e. B ) |
| 12 | 10 11 | sylan | |- ( ( K e. OML /\ X e. B ) -> ( ._|_ ` X ) e. B ) |
| 13 | 12 | 3adant3 | |- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( ._|_ ` X ) e. B ) |
| 14 | simp3 | |- ( ( K e. OML /\ X e. B /\ Y e. B ) -> Y e. B ) |
|
| 15 | 1 4 | latmcom | |- ( ( K e. Lat /\ ( ._|_ ` X ) e. B /\ Y e. B ) -> ( ( ._|_ ` X ) ./\ Y ) = ( Y ./\ ( ._|_ ` X ) ) ) |
| 16 | 9 13 14 15 | syl3anc | |- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( ( ._|_ ` X ) ./\ Y ) = ( Y ./\ ( ._|_ ` X ) ) ) |
| 17 | 16 | oveq2d | |- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X .\/ ( ( ._|_ ` X ) ./\ Y ) ) = ( X .\/ ( Y ./\ ( ._|_ ` X ) ) ) ) |
| 18 | 17 | eqeq2d | |- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( Y = ( X .\/ ( ( ._|_ ` X ) ./\ Y ) ) <-> Y = ( X .\/ ( Y ./\ ( ._|_ ` X ) ) ) ) ) |
| 19 | 7 18 | bitrid | |- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( ( X .\/ ( ( ._|_ ` X ) ./\ Y ) ) = Y <-> Y = ( X .\/ ( Y ./\ ( ._|_ ` X ) ) ) ) ) |
| 20 | 6 19 | sylibrd | |- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X .<_ Y -> ( X .\/ ( ( ._|_ ` X ) ./\ Y ) ) = Y ) ) |