This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthomodular law. (Contributed by NM, 18-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omllaw.b | |- B = ( Base ` K ) |
|
| omllaw.l | |- .<_ = ( le ` K ) |
||
| omllaw.j | |- .\/ = ( join ` K ) |
||
| omllaw.m | |- ./\ = ( meet ` K ) |
||
| omllaw.o | |- ._|_ = ( oc ` K ) |
||
| Assertion | omllaw | |- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X .<_ Y -> Y = ( X .\/ ( Y ./\ ( ._|_ ` X ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omllaw.b | |- B = ( Base ` K ) |
|
| 2 | omllaw.l | |- .<_ = ( le ` K ) |
|
| 3 | omllaw.j | |- .\/ = ( join ` K ) |
|
| 4 | omllaw.m | |- ./\ = ( meet ` K ) |
|
| 5 | omllaw.o | |- ._|_ = ( oc ` K ) |
|
| 6 | 1 2 3 4 5 | isoml | |- ( K e. OML <-> ( K e. OL /\ A. x e. B A. y e. B ( x .<_ y -> y = ( x .\/ ( y ./\ ( ._|_ ` x ) ) ) ) ) ) |
| 7 | 6 | simprbi | |- ( K e. OML -> A. x e. B A. y e. B ( x .<_ y -> y = ( x .\/ ( y ./\ ( ._|_ ` x ) ) ) ) ) |
| 8 | breq1 | |- ( x = X -> ( x .<_ y <-> X .<_ y ) ) |
|
| 9 | id | |- ( x = X -> x = X ) |
|
| 10 | fveq2 | |- ( x = X -> ( ._|_ ` x ) = ( ._|_ ` X ) ) |
|
| 11 | 10 | oveq2d | |- ( x = X -> ( y ./\ ( ._|_ ` x ) ) = ( y ./\ ( ._|_ ` X ) ) ) |
| 12 | 9 11 | oveq12d | |- ( x = X -> ( x .\/ ( y ./\ ( ._|_ ` x ) ) ) = ( X .\/ ( y ./\ ( ._|_ ` X ) ) ) ) |
| 13 | 12 | eqeq2d | |- ( x = X -> ( y = ( x .\/ ( y ./\ ( ._|_ ` x ) ) ) <-> y = ( X .\/ ( y ./\ ( ._|_ ` X ) ) ) ) ) |
| 14 | 8 13 | imbi12d | |- ( x = X -> ( ( x .<_ y -> y = ( x .\/ ( y ./\ ( ._|_ ` x ) ) ) ) <-> ( X .<_ y -> y = ( X .\/ ( y ./\ ( ._|_ ` X ) ) ) ) ) ) |
| 15 | breq2 | |- ( y = Y -> ( X .<_ y <-> X .<_ Y ) ) |
|
| 16 | id | |- ( y = Y -> y = Y ) |
|
| 17 | oveq1 | |- ( y = Y -> ( y ./\ ( ._|_ ` X ) ) = ( Y ./\ ( ._|_ ` X ) ) ) |
|
| 18 | 17 | oveq2d | |- ( y = Y -> ( X .\/ ( y ./\ ( ._|_ ` X ) ) ) = ( X .\/ ( Y ./\ ( ._|_ ` X ) ) ) ) |
| 19 | 16 18 | eqeq12d | |- ( y = Y -> ( y = ( X .\/ ( y ./\ ( ._|_ ` X ) ) ) <-> Y = ( X .\/ ( Y ./\ ( ._|_ ` X ) ) ) ) ) |
| 20 | 15 19 | imbi12d | |- ( y = Y -> ( ( X .<_ y -> y = ( X .\/ ( y ./\ ( ._|_ ` X ) ) ) ) <-> ( X .<_ Y -> Y = ( X .\/ ( Y ./\ ( ._|_ ` X ) ) ) ) ) ) |
| 21 | 14 20 | rspc2v | |- ( ( X e. B /\ Y e. B ) -> ( A. x e. B A. y e. B ( x .<_ y -> y = ( x .\/ ( y ./\ ( ._|_ ` x ) ) ) ) -> ( X .<_ Y -> Y = ( X .\/ ( Y ./\ ( ._|_ ` X ) ) ) ) ) ) |
| 22 | 7 21 | syl5com | |- ( K e. OML -> ( ( X e. B /\ Y e. B ) -> ( X .<_ Y -> Y = ( X .\/ ( Y ./\ ( ._|_ ` X ) ) ) ) ) ) |
| 23 | 22 | 3impib | |- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X .<_ Y -> Y = ( X .\/ ( Y ./\ ( ._|_ ` X ) ) ) ) ) |