This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Variation of orthomodular law. Definition of OML law in Kalmbach p. 22. ( pjoml2i analog.) (Contributed by NM, 6-Nov-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omllaw.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| omllaw.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| omllaw.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| omllaw.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| omllaw.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | ||
| Assertion | omllaw2N | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → ( 𝑋 ∨ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omllaw.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | omllaw.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | omllaw.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | omllaw.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 5 | omllaw.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | |
| 6 | 1 2 3 4 5 | omllaw | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → 𝑌 = ( 𝑋 ∨ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
| 7 | eqcom | ⊢ ( ( 𝑋 ∨ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) = 𝑌 ↔ 𝑌 = ( 𝑋 ∨ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ) | |
| 8 | omllat | ⊢ ( 𝐾 ∈ OML → 𝐾 ∈ Lat ) | |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
| 10 | omlop | ⊢ ( 𝐾 ∈ OML → 𝐾 ∈ OP ) | |
| 11 | 1 5 | opoccl | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
| 12 | 10 11 | sylan | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
| 13 | 12 | 3adant3 | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
| 14 | simp3 | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 15 | 1 4 | latmcom | ⊢ ( ( 𝐾 ∈ Lat ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) = ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) |
| 16 | 9 13 14 15 | syl3anc | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) = ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) |
| 17 | 16 | oveq2d | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) = ( 𝑋 ∨ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 18 | 17 | eqeq2d | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 = ( 𝑋 ∨ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ↔ 𝑌 = ( 𝑋 ∨ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
| 19 | 7 18 | bitrid | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∨ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) = 𝑌 ↔ 𝑌 = ( 𝑋 ∨ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
| 20 | 6 19 | sylibrd | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → ( 𝑋 ∨ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) = 𝑌 ) ) |