This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal multiplication with 1. Proposition 8.18(2) of TakeutiZaring p. 63. Lemma 2.15 of Schloeder p. 5. (Contributed by NM, 3-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | om1r | |- ( A e. On -> ( 1o .o A ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( x = (/) -> ( 1o .o x ) = ( 1o .o (/) ) ) |
|
| 2 | id | |- ( x = (/) -> x = (/) ) |
|
| 3 | 1 2 | eqeq12d | |- ( x = (/) -> ( ( 1o .o x ) = x <-> ( 1o .o (/) ) = (/) ) ) |
| 4 | oveq2 | |- ( x = y -> ( 1o .o x ) = ( 1o .o y ) ) |
|
| 5 | id | |- ( x = y -> x = y ) |
|
| 6 | 4 5 | eqeq12d | |- ( x = y -> ( ( 1o .o x ) = x <-> ( 1o .o y ) = y ) ) |
| 7 | oveq2 | |- ( x = suc y -> ( 1o .o x ) = ( 1o .o suc y ) ) |
|
| 8 | id | |- ( x = suc y -> x = suc y ) |
|
| 9 | 7 8 | eqeq12d | |- ( x = suc y -> ( ( 1o .o x ) = x <-> ( 1o .o suc y ) = suc y ) ) |
| 10 | oveq2 | |- ( x = A -> ( 1o .o x ) = ( 1o .o A ) ) |
|
| 11 | id | |- ( x = A -> x = A ) |
|
| 12 | 10 11 | eqeq12d | |- ( x = A -> ( ( 1o .o x ) = x <-> ( 1o .o A ) = A ) ) |
| 13 | 1on | |- 1o e. On |
|
| 14 | om0 | |- ( 1o e. On -> ( 1o .o (/) ) = (/) ) |
|
| 15 | 13 14 | ax-mp | |- ( 1o .o (/) ) = (/) |
| 16 | omsuc | |- ( ( 1o e. On /\ y e. On ) -> ( 1o .o suc y ) = ( ( 1o .o y ) +o 1o ) ) |
|
| 17 | 13 16 | mpan | |- ( y e. On -> ( 1o .o suc y ) = ( ( 1o .o y ) +o 1o ) ) |
| 18 | oveq1 | |- ( ( 1o .o y ) = y -> ( ( 1o .o y ) +o 1o ) = ( y +o 1o ) ) |
|
| 19 | 17 18 | sylan9eq | |- ( ( y e. On /\ ( 1o .o y ) = y ) -> ( 1o .o suc y ) = ( y +o 1o ) ) |
| 20 | oa1suc | |- ( y e. On -> ( y +o 1o ) = suc y ) |
|
| 21 | 20 | adantr | |- ( ( y e. On /\ ( 1o .o y ) = y ) -> ( y +o 1o ) = suc y ) |
| 22 | 19 21 | eqtrd | |- ( ( y e. On /\ ( 1o .o y ) = y ) -> ( 1o .o suc y ) = suc y ) |
| 23 | 22 | ex | |- ( y e. On -> ( ( 1o .o y ) = y -> ( 1o .o suc y ) = suc y ) ) |
| 24 | iuneq2 | |- ( A. y e. x ( 1o .o y ) = y -> U_ y e. x ( 1o .o y ) = U_ y e. x y ) |
|
| 25 | uniiun | |- U. x = U_ y e. x y |
|
| 26 | 24 25 | eqtr4di | |- ( A. y e. x ( 1o .o y ) = y -> U_ y e. x ( 1o .o y ) = U. x ) |
| 27 | vex | |- x e. _V |
|
| 28 | omlim | |- ( ( 1o e. On /\ ( x e. _V /\ Lim x ) ) -> ( 1o .o x ) = U_ y e. x ( 1o .o y ) ) |
|
| 29 | 13 28 | mpan | |- ( ( x e. _V /\ Lim x ) -> ( 1o .o x ) = U_ y e. x ( 1o .o y ) ) |
| 30 | 27 29 | mpan | |- ( Lim x -> ( 1o .o x ) = U_ y e. x ( 1o .o y ) ) |
| 31 | limuni | |- ( Lim x -> x = U. x ) |
|
| 32 | 30 31 | eqeq12d | |- ( Lim x -> ( ( 1o .o x ) = x <-> U_ y e. x ( 1o .o y ) = U. x ) ) |
| 33 | 26 32 | imbitrrid | |- ( Lim x -> ( A. y e. x ( 1o .o y ) = y -> ( 1o .o x ) = x ) ) |
| 34 | 3 6 9 12 15 23 33 | tfinds | |- ( A e. On -> ( 1o .o A ) = A ) |