This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal multiplication with a limit ordinal. Definition 8.15 of TakeutiZaring p. 62. Definition 2.5 of Schloeder p. 4. (Contributed by NM, 3-Aug-2004) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omlim | |- ( ( A e. On /\ ( B e. C /\ Lim B ) ) -> ( A .o B ) = U_ x e. B ( A .o x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limelon | |- ( ( B e. C /\ Lim B ) -> B e. On ) |
|
| 2 | simpr | |- ( ( B e. C /\ Lim B ) -> Lim B ) |
|
| 3 | 1 2 | jca | |- ( ( B e. C /\ Lim B ) -> ( B e. On /\ Lim B ) ) |
| 4 | rdglim2a | |- ( ( B e. On /\ Lim B ) -> ( rec ( ( y e. _V |-> ( y +o A ) ) , (/) ) ` B ) = U_ x e. B ( rec ( ( y e. _V |-> ( y +o A ) ) , (/) ) ` x ) ) |
|
| 5 | 4 | adantl | |- ( ( A e. On /\ ( B e. On /\ Lim B ) ) -> ( rec ( ( y e. _V |-> ( y +o A ) ) , (/) ) ` B ) = U_ x e. B ( rec ( ( y e. _V |-> ( y +o A ) ) , (/) ) ` x ) ) |
| 6 | omv | |- ( ( A e. On /\ B e. On ) -> ( A .o B ) = ( rec ( ( y e. _V |-> ( y +o A ) ) , (/) ) ` B ) ) |
|
| 7 | onelon | |- ( ( B e. On /\ x e. B ) -> x e. On ) |
|
| 8 | omv | |- ( ( A e. On /\ x e. On ) -> ( A .o x ) = ( rec ( ( y e. _V |-> ( y +o A ) ) , (/) ) ` x ) ) |
|
| 9 | 7 8 | sylan2 | |- ( ( A e. On /\ ( B e. On /\ x e. B ) ) -> ( A .o x ) = ( rec ( ( y e. _V |-> ( y +o A ) ) , (/) ) ` x ) ) |
| 10 | 9 | anassrs | |- ( ( ( A e. On /\ B e. On ) /\ x e. B ) -> ( A .o x ) = ( rec ( ( y e. _V |-> ( y +o A ) ) , (/) ) ` x ) ) |
| 11 | 10 | iuneq2dv | |- ( ( A e. On /\ B e. On ) -> U_ x e. B ( A .o x ) = U_ x e. B ( rec ( ( y e. _V |-> ( y +o A ) ) , (/) ) ` x ) ) |
| 12 | 6 11 | eqeq12d | |- ( ( A e. On /\ B e. On ) -> ( ( A .o B ) = U_ x e. B ( A .o x ) <-> ( rec ( ( y e. _V |-> ( y +o A ) ) , (/) ) ` B ) = U_ x e. B ( rec ( ( y e. _V |-> ( y +o A ) ) , (/) ) ` x ) ) ) |
| 13 | 12 | adantrr | |- ( ( A e. On /\ ( B e. On /\ Lim B ) ) -> ( ( A .o B ) = U_ x e. B ( A .o x ) <-> ( rec ( ( y e. _V |-> ( y +o A ) ) , (/) ) ` B ) = U_ x e. B ( rec ( ( y e. _V |-> ( y +o A ) ) , (/) ) ` x ) ) ) |
| 14 | 5 13 | mpbird | |- ( ( A e. On /\ ( B e. On /\ Lim B ) ) -> ( A .o B ) = U_ x e. B ( A .o x ) ) |
| 15 | 3 14 | sylan2 | |- ( ( A e. On /\ ( B e. C /\ Lim B ) ) -> ( A .o B ) = U_ x e. B ( A .o x ) ) |