This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal multiplication with 1. Proposition 8.18(2) of TakeutiZaring p. 63. Lemma 2.15 of Schloeder p. 5. (Contributed by NM, 3-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | om1r | ⊢ ( 𝐴 ∈ On → ( 1o ·o 𝐴 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 1o ·o 𝑥 ) = ( 1o ·o ∅ ) ) | |
| 2 | id | ⊢ ( 𝑥 = ∅ → 𝑥 = ∅ ) | |
| 3 | 1 2 | eqeq12d | ⊢ ( 𝑥 = ∅ → ( ( 1o ·o 𝑥 ) = 𝑥 ↔ ( 1o ·o ∅ ) = ∅ ) ) |
| 4 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 1o ·o 𝑥 ) = ( 1o ·o 𝑦 ) ) | |
| 5 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 6 | 4 5 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 1o ·o 𝑥 ) = 𝑥 ↔ ( 1o ·o 𝑦 ) = 𝑦 ) ) |
| 7 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 1o ·o 𝑥 ) = ( 1o ·o suc 𝑦 ) ) | |
| 8 | id | ⊢ ( 𝑥 = suc 𝑦 → 𝑥 = suc 𝑦 ) | |
| 9 | 7 8 | eqeq12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 1o ·o 𝑥 ) = 𝑥 ↔ ( 1o ·o suc 𝑦 ) = suc 𝑦 ) ) |
| 10 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( 1o ·o 𝑥 ) = ( 1o ·o 𝐴 ) ) | |
| 11 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
| 12 | 10 11 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( 1o ·o 𝑥 ) = 𝑥 ↔ ( 1o ·o 𝐴 ) = 𝐴 ) ) |
| 13 | 1on | ⊢ 1o ∈ On | |
| 14 | om0 | ⊢ ( 1o ∈ On → ( 1o ·o ∅ ) = ∅ ) | |
| 15 | 13 14 | ax-mp | ⊢ ( 1o ·o ∅ ) = ∅ |
| 16 | omsuc | ⊢ ( ( 1o ∈ On ∧ 𝑦 ∈ On ) → ( 1o ·o suc 𝑦 ) = ( ( 1o ·o 𝑦 ) +o 1o ) ) | |
| 17 | 13 16 | mpan | ⊢ ( 𝑦 ∈ On → ( 1o ·o suc 𝑦 ) = ( ( 1o ·o 𝑦 ) +o 1o ) ) |
| 18 | oveq1 | ⊢ ( ( 1o ·o 𝑦 ) = 𝑦 → ( ( 1o ·o 𝑦 ) +o 1o ) = ( 𝑦 +o 1o ) ) | |
| 19 | 17 18 | sylan9eq | ⊢ ( ( 𝑦 ∈ On ∧ ( 1o ·o 𝑦 ) = 𝑦 ) → ( 1o ·o suc 𝑦 ) = ( 𝑦 +o 1o ) ) |
| 20 | oa1suc | ⊢ ( 𝑦 ∈ On → ( 𝑦 +o 1o ) = suc 𝑦 ) | |
| 21 | 20 | adantr | ⊢ ( ( 𝑦 ∈ On ∧ ( 1o ·o 𝑦 ) = 𝑦 ) → ( 𝑦 +o 1o ) = suc 𝑦 ) |
| 22 | 19 21 | eqtrd | ⊢ ( ( 𝑦 ∈ On ∧ ( 1o ·o 𝑦 ) = 𝑦 ) → ( 1o ·o suc 𝑦 ) = suc 𝑦 ) |
| 23 | 22 | ex | ⊢ ( 𝑦 ∈ On → ( ( 1o ·o 𝑦 ) = 𝑦 → ( 1o ·o suc 𝑦 ) = suc 𝑦 ) ) |
| 24 | iuneq2 | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( 1o ·o 𝑦 ) = 𝑦 → ∪ 𝑦 ∈ 𝑥 ( 1o ·o 𝑦 ) = ∪ 𝑦 ∈ 𝑥 𝑦 ) | |
| 25 | uniiun | ⊢ ∪ 𝑥 = ∪ 𝑦 ∈ 𝑥 𝑦 | |
| 26 | 24 25 | eqtr4di | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( 1o ·o 𝑦 ) = 𝑦 → ∪ 𝑦 ∈ 𝑥 ( 1o ·o 𝑦 ) = ∪ 𝑥 ) |
| 27 | vex | ⊢ 𝑥 ∈ V | |
| 28 | omlim | ⊢ ( ( 1o ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 1o ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 1o ·o 𝑦 ) ) | |
| 29 | 13 28 | mpan | ⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → ( 1o ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 1o ·o 𝑦 ) ) |
| 30 | 27 29 | mpan | ⊢ ( Lim 𝑥 → ( 1o ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 1o ·o 𝑦 ) ) |
| 31 | limuni | ⊢ ( Lim 𝑥 → 𝑥 = ∪ 𝑥 ) | |
| 32 | 30 31 | eqeq12d | ⊢ ( Lim 𝑥 → ( ( 1o ·o 𝑥 ) = 𝑥 ↔ ∪ 𝑦 ∈ 𝑥 ( 1o ·o 𝑦 ) = ∪ 𝑥 ) ) |
| 33 | 26 32 | imbitrrid | ⊢ ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 1o ·o 𝑦 ) = 𝑦 → ( 1o ·o 𝑥 ) = 𝑥 ) ) |
| 34 | 3 6 9 12 15 23 33 | tfinds | ⊢ ( 𝐴 ∈ On → ( 1o ·o 𝐴 ) = 𝐴 ) |