This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Unconditional restriction of the mapping operation. (Contributed by Stefan O'Rear, 24-Jan-2015) (Proof shortened by Mario Carneiro, 22-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resmpt3 | |- ( ( x e. A |-> C ) |` B ) = ( x e. ( A i^i B ) |-> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resres | |- ( ( ( x e. A |-> C ) |` A ) |` B ) = ( ( x e. A |-> C ) |` ( A i^i B ) ) |
|
| 2 | ssid | |- A C_ A |
|
| 3 | resmpt | |- ( A C_ A -> ( ( x e. A |-> C ) |` A ) = ( x e. A |-> C ) ) |
|
| 4 | 2 3 | ax-mp | |- ( ( x e. A |-> C ) |` A ) = ( x e. A |-> C ) |
| 5 | 4 | reseq1i | |- ( ( ( x e. A |-> C ) |` A ) |` B ) = ( ( x e. A |-> C ) |` B ) |
| 6 | inss1 | |- ( A i^i B ) C_ A |
|
| 7 | resmpt | |- ( ( A i^i B ) C_ A -> ( ( x e. A |-> C ) |` ( A i^i B ) ) = ( x e. ( A i^i B ) |-> C ) ) |
|
| 8 | 6 7 | ax-mp | |- ( ( x e. A |-> C ) |` ( A i^i B ) ) = ( x e. ( A i^i B ) |-> C ) |
| 9 | 1 5 8 | 3eqtr3i | |- ( ( x e. A |-> C ) |` B ) = ( x e. ( A i^i B ) |-> C ) |