This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of ordinal exponentiation. (Contributed by NM, 30-Dec-2004) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oev | |- ( ( A e. On /\ B e. On ) -> ( A ^o B ) = if ( A = (/) , ( 1o \ B ) , ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 | |- ( y = A -> ( y = (/) <-> A = (/) ) ) |
|
| 2 | oveq2 | |- ( y = A -> ( x .o y ) = ( x .o A ) ) |
|
| 3 | 2 | mpteq2dv | |- ( y = A -> ( x e. _V |-> ( x .o y ) ) = ( x e. _V |-> ( x .o A ) ) ) |
| 4 | rdgeq1 | |- ( ( x e. _V |-> ( x .o y ) ) = ( x e. _V |-> ( x .o A ) ) -> rec ( ( x e. _V |-> ( x .o y ) ) , 1o ) = rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ) |
|
| 5 | 3 4 | syl | |- ( y = A -> rec ( ( x e. _V |-> ( x .o y ) ) , 1o ) = rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ) |
| 6 | 5 | fveq1d | |- ( y = A -> ( rec ( ( x e. _V |-> ( x .o y ) ) , 1o ) ` z ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` z ) ) |
| 7 | 1 6 | ifbieq2d | |- ( y = A -> if ( y = (/) , ( 1o \ z ) , ( rec ( ( x e. _V |-> ( x .o y ) ) , 1o ) ` z ) ) = if ( A = (/) , ( 1o \ z ) , ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` z ) ) ) |
| 8 | difeq2 | |- ( z = B -> ( 1o \ z ) = ( 1o \ B ) ) |
|
| 9 | fveq2 | |- ( z = B -> ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` z ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) |
|
| 10 | 8 9 | ifeq12d | |- ( z = B -> if ( A = (/) , ( 1o \ z ) , ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` z ) ) = if ( A = (/) , ( 1o \ B ) , ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) ) |
| 11 | df-oexp | |- ^o = ( y e. On , z e. On |-> if ( y = (/) , ( 1o \ z ) , ( rec ( ( x e. _V |-> ( x .o y ) ) , 1o ) ` z ) ) ) |
|
| 12 | 1oex | |- 1o e. _V |
|
| 13 | 12 | difexi | |- ( 1o \ B ) e. _V |
| 14 | fvex | |- ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) e. _V |
|
| 15 | 13 14 | ifex | |- if ( A = (/) , ( 1o \ B ) , ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) e. _V |
| 16 | 7 10 11 15 | ovmpo | |- ( ( A e. On /\ B e. On ) -> ( A ^o B ) = if ( A = (/) , ( 1o \ B ) , ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) ) |