This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of ordinal exponentiation at a nonzero base. (Contributed by NM, 31-Dec-2004) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oevn0 | |- ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) -> ( A ^o B ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on0eln0 | |- ( A e. On -> ( (/) e. A <-> A =/= (/) ) ) |
|
| 2 | df-ne | |- ( A =/= (/) <-> -. A = (/) ) |
|
| 3 | 1 2 | bitrdi | |- ( A e. On -> ( (/) e. A <-> -. A = (/) ) ) |
| 4 | 3 | adantr | |- ( ( A e. On /\ B e. On ) -> ( (/) e. A <-> -. A = (/) ) ) |
| 5 | oev | |- ( ( A e. On /\ B e. On ) -> ( A ^o B ) = if ( A = (/) , ( 1o \ B ) , ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) ) |
|
| 6 | iffalse | |- ( -. A = (/) -> if ( A = (/) , ( 1o \ B ) , ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) |
|
| 7 | 5 6 | sylan9eq | |- ( ( ( A e. On /\ B e. On ) /\ -. A = (/) ) -> ( A ^o B ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) |
| 8 | 7 | ex | |- ( ( A e. On /\ B e. On ) -> ( -. A = (/) -> ( A ^o B ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) ) |
| 9 | 4 8 | sylbid | |- ( ( A e. On /\ B e. On ) -> ( (/) e. A -> ( A ^o B ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) ) |
| 10 | 9 | imp | |- ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) -> ( A ^o B ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) |