This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A poset ordering is asymmetric. (Contributed by NM, 21-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | posi.b | |- B = ( Base ` K ) |
|
| posi.l | |- .<_ = ( le ` K ) |
||
| Assertion | posasymb | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( ( X .<_ Y /\ Y .<_ X ) <-> X = Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | posi.b | |- B = ( Base ` K ) |
|
| 2 | posi.l | |- .<_ = ( le ` K ) |
|
| 3 | simp1 | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> K e. Poset ) |
|
| 4 | simp2 | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> X e. B ) |
|
| 5 | simp3 | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> Y e. B ) |
|
| 6 | 1 2 | posi | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Y e. B ) ) -> ( X .<_ X /\ ( ( X .<_ Y /\ Y .<_ X ) -> X = Y ) /\ ( ( X .<_ Y /\ Y .<_ Y ) -> X .<_ Y ) ) ) |
| 7 | 3 4 5 5 6 | syl13anc | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X .<_ X /\ ( ( X .<_ Y /\ Y .<_ X ) -> X = Y ) /\ ( ( X .<_ Y /\ Y .<_ Y ) -> X .<_ Y ) ) ) |
| 8 | 7 | simp2d | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( ( X .<_ Y /\ Y .<_ X ) -> X = Y ) ) |
| 9 | 1 2 | posref | |- ( ( K e. Poset /\ X e. B ) -> X .<_ X ) |
| 10 | breq2 | |- ( X = Y -> ( X .<_ X <-> X .<_ Y ) ) |
|
| 11 | 9 10 | syl5ibcom | |- ( ( K e. Poset /\ X e. B ) -> ( X = Y -> X .<_ Y ) ) |
| 12 | breq1 | |- ( X = Y -> ( X .<_ X <-> Y .<_ X ) ) |
|
| 13 | 9 12 | syl5ibcom | |- ( ( K e. Poset /\ X e. B ) -> ( X = Y -> Y .<_ X ) ) |
| 14 | 11 13 | jcad | |- ( ( K e. Poset /\ X e. B ) -> ( X = Y -> ( X .<_ Y /\ Y .<_ X ) ) ) |
| 15 | 14 | 3adant3 | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X = Y -> ( X .<_ Y /\ Y .<_ X ) ) ) |
| 16 | 8 15 | impbid | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( ( X .<_ Y /\ Y .<_ X ) <-> X = Y ) ) |