This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group identity is the unique element of a group with order one. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Mario Carneiro, 23-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | od1.1 | ||
| od1.2 | |||
| odeq1.3 | |||
| Assertion | odeq1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | od1.1 | ||
| 2 | od1.2 | ||
| 3 | odeq1.3 | ||
| 4 | oveq1 | ||
| 5 | 4 | eqcomd | |
| 6 | eqid | ||
| 7 | 3 6 | mulg1 | |
| 8 | 3 1 6 2 | odid | |
| 9 | 7 8 | eqeq12d | |
| 10 | 9 | adantl | |
| 11 | 5 10 | imbitrid | |
| 12 | 1 2 | od1 | |
| 13 | 12 | adantr | |
| 14 | fveqeq2 | ||
| 15 | 13 14 | syl5ibrcom | |
| 16 | 11 15 | impbid |