This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An odd prime is greater than 2. (Contributed by AV, 20-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oddprmgt2 | |- ( P e. ( Prime \ { 2 } ) -> 2 < P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn | |- ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) |
|
| 2 | prmuz2 | |- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
|
| 3 | eluz2 | |- ( P e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ P e. ZZ /\ 2 <_ P ) ) |
|
| 4 | zre | |- ( 2 e. ZZ -> 2 e. RR ) |
|
| 5 | zre | |- ( P e. ZZ -> P e. RR ) |
|
| 6 | ltlen | |- ( ( 2 e. RR /\ P e. RR ) -> ( 2 < P <-> ( 2 <_ P /\ P =/= 2 ) ) ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( 2 e. ZZ /\ P e. ZZ ) -> ( 2 < P <-> ( 2 <_ P /\ P =/= 2 ) ) ) |
| 8 | 7 | biimprd | |- ( ( 2 e. ZZ /\ P e. ZZ ) -> ( ( 2 <_ P /\ P =/= 2 ) -> 2 < P ) ) |
| 9 | 8 | exp4b | |- ( 2 e. ZZ -> ( P e. ZZ -> ( 2 <_ P -> ( P =/= 2 -> 2 < P ) ) ) ) |
| 10 | 9 | 3imp | |- ( ( 2 e. ZZ /\ P e. ZZ /\ 2 <_ P ) -> ( P =/= 2 -> 2 < P ) ) |
| 11 | 3 10 | sylbi | |- ( P e. ( ZZ>= ` 2 ) -> ( P =/= 2 -> 2 < P ) ) |
| 12 | 2 11 | syl | |- ( P e. Prime -> ( P =/= 2 -> 2 < P ) ) |
| 13 | 12 | imp | |- ( ( P e. Prime /\ P =/= 2 ) -> 2 < P ) |
| 14 | 1 13 | sylbi | |- ( P e. ( Prime \ { 2 } ) -> 2 < P ) |