This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthocomplement of the base set. (Contributed by Mario Carneiro, 23-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ocvz.v | |- V = ( Base ` W ) |
|
| ocvz.o | |- ._|_ = ( ocv ` W ) |
||
| ocvz.z | |- .0. = ( 0g ` W ) |
||
| Assertion | ocv1 | |- ( W e. PreHil -> ( ._|_ ` V ) = { .0. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvz.v | |- V = ( Base ` W ) |
|
| 2 | ocvz.o | |- ._|_ = ( ocv ` W ) |
|
| 3 | ocvz.z | |- .0. = ( 0g ` W ) |
|
| 4 | 1 2 | ocvss | |- ( ._|_ ` V ) C_ V |
| 5 | sseqin2 | |- ( ( ._|_ ` V ) C_ V <-> ( V i^i ( ._|_ ` V ) ) = ( ._|_ ` V ) ) |
|
| 6 | 4 5 | mpbi | |- ( V i^i ( ._|_ ` V ) ) = ( ._|_ ` V ) |
| 7 | phllmod | |- ( W e. PreHil -> W e. LMod ) |
|
| 8 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 9 | 1 8 | lss1 | |- ( W e. LMod -> V e. ( LSubSp ` W ) ) |
| 10 | 7 9 | syl | |- ( W e. PreHil -> V e. ( LSubSp ` W ) ) |
| 11 | 2 8 3 | ocvin | |- ( ( W e. PreHil /\ V e. ( LSubSp ` W ) ) -> ( V i^i ( ._|_ ` V ) ) = { .0. } ) |
| 12 | 10 11 | mpdan | |- ( W e. PreHil -> ( V i^i ( ._|_ ` V ) ) = { .0. } ) |
| 13 | 6 12 | eqtr3id | |- ( W e. PreHil -> ( ._|_ ` V ) = { .0. } ) |