This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthocomplement of the empty set. (Contributed by Mario Carneiro, 23-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ocvz.v | |- V = ( Base ` W ) |
|
| ocvz.o | |- ._|_ = ( ocv ` W ) |
||
| Assertion | ocv0 | |- ( ._|_ ` (/) ) = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvz.v | |- V = ( Base ` W ) |
|
| 2 | ocvz.o | |- ._|_ = ( ocv ` W ) |
|
| 3 | 0ss | |- (/) C_ V |
|
| 4 | eqid | |- ( .i ` W ) = ( .i ` W ) |
|
| 5 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 6 | eqid | |- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
|
| 7 | 1 4 5 6 2 | ocvval | |- ( (/) C_ V -> ( ._|_ ` (/) ) = { x e. V | A. y e. (/) ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) } ) |
| 8 | 3 7 | ax-mp | |- ( ._|_ ` (/) ) = { x e. V | A. y e. (/) ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) } |
| 9 | ral0 | |- A. y e. (/) ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) |
|
| 10 | 9 | rgenw | |- A. x e. V A. y e. (/) ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) |
| 11 | rabid2 | |- ( V = { x e. V | A. y e. (/) ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) } <-> A. x e. V A. y e. (/) ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) ) |
|
| 12 | 10 11 | mpbir | |- V = { x e. V | A. y e. (/) ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) } |
| 13 | 8 12 | eqtr4i | |- ( ._|_ ` (/) ) = V |