This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that S and T are orthogonal subspaces. (Contributed by Mario Carneiro, 23-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ocvlsp.v | |- V = ( Base ` W ) |
|
| ocvlsp.o | |- ._|_ = ( ocv ` W ) |
||
| Assertion | ocvsscon | |- ( ( W e. PreHil /\ S C_ V /\ T C_ V ) -> ( S C_ ( ._|_ ` T ) <-> T C_ ( ._|_ ` S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvlsp.v | |- V = ( Base ` W ) |
|
| 2 | ocvlsp.o | |- ._|_ = ( ocv ` W ) |
|
| 3 | 1 2 | ocvocv | |- ( ( W e. PreHil /\ T C_ V ) -> T C_ ( ._|_ ` ( ._|_ ` T ) ) ) |
| 4 | 3 | 3adant2 | |- ( ( W e. PreHil /\ S C_ V /\ T C_ V ) -> T C_ ( ._|_ ` ( ._|_ ` T ) ) ) |
| 5 | 2 | ocv2ss | |- ( S C_ ( ._|_ ` T ) -> ( ._|_ ` ( ._|_ ` T ) ) C_ ( ._|_ ` S ) ) |
| 6 | sstr2 | |- ( T C_ ( ._|_ ` ( ._|_ ` T ) ) -> ( ( ._|_ ` ( ._|_ ` T ) ) C_ ( ._|_ ` S ) -> T C_ ( ._|_ ` S ) ) ) |
|
| 7 | 4 5 6 | syl2im | |- ( ( W e. PreHil /\ S C_ V /\ T C_ V ) -> ( S C_ ( ._|_ ` T ) -> T C_ ( ._|_ ` S ) ) ) |
| 8 | 1 2 | ocvocv | |- ( ( W e. PreHil /\ S C_ V ) -> S C_ ( ._|_ ` ( ._|_ ` S ) ) ) |
| 9 | 8 | 3adant3 | |- ( ( W e. PreHil /\ S C_ V /\ T C_ V ) -> S C_ ( ._|_ ` ( ._|_ ` S ) ) ) |
| 10 | 2 | ocv2ss | |- ( T C_ ( ._|_ ` S ) -> ( ._|_ ` ( ._|_ ` S ) ) C_ ( ._|_ ` T ) ) |
| 11 | sstr2 | |- ( S C_ ( ._|_ ` ( ._|_ ` S ) ) -> ( ( ._|_ ` ( ._|_ ` S ) ) C_ ( ._|_ ` T ) -> S C_ ( ._|_ ` T ) ) ) |
|
| 12 | 9 10 11 | syl2im | |- ( ( W e. PreHil /\ S C_ V /\ T C_ V ) -> ( T C_ ( ._|_ ` S ) -> S C_ ( ._|_ ` T ) ) ) |
| 13 | 7 12 | impbid | |- ( ( W e. PreHil /\ S C_ V /\ T C_ V ) -> ( S C_ ( ._|_ ` T ) <-> T C_ ( ._|_ ` S ) ) ) |