This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of two subspaces is a subspace. (Contributed by NM, 7-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lssintcl.s | |- S = ( LSubSp ` W ) |
|
| Assertion | lssincl | |- ( ( W e. LMod /\ T e. S /\ U e. S ) -> ( T i^i U ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssintcl.s | |- S = ( LSubSp ` W ) |
|
| 2 | intprg | |- ( ( T e. S /\ U e. S ) -> |^| { T , U } = ( T i^i U ) ) |
|
| 3 | 2 | 3adant1 | |- ( ( W e. LMod /\ T e. S /\ U e. S ) -> |^| { T , U } = ( T i^i U ) ) |
| 4 | simp1 | |- ( ( W e. LMod /\ T e. S /\ U e. S ) -> W e. LMod ) |
|
| 5 | prssi | |- ( ( T e. S /\ U e. S ) -> { T , U } C_ S ) |
|
| 6 | 5 | 3adant1 | |- ( ( W e. LMod /\ T e. S /\ U e. S ) -> { T , U } C_ S ) |
| 7 | prnzg | |- ( T e. S -> { T , U } =/= (/) ) |
|
| 8 | 7 | 3ad2ant2 | |- ( ( W e. LMod /\ T e. S /\ U e. S ) -> { T , U } =/= (/) ) |
| 9 | 1 | lssintcl | |- ( ( W e. LMod /\ { T , U } C_ S /\ { T , U } =/= (/) ) -> |^| { T , U } e. S ) |
| 10 | 4 6 8 9 | syl3anc | |- ( ( W e. LMod /\ T e. S /\ U e. S ) -> |^| { T , U } e. S ) |
| 11 | 3 10 | eqeltrrd | |- ( ( W e. LMod /\ T e. S /\ U e. S ) -> ( T i^i U ) e. S ) |