This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero subspace is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | css0.c | |- C = ( ClSubSp ` W ) |
|
| Assertion | cssincl | |- ( ( W e. PreHil /\ A e. C /\ B e. C ) -> ( A i^i B ) e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | css0.c | |- C = ( ClSubSp ` W ) |
|
| 2 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 3 | eqid | |- ( ocv ` W ) = ( ocv ` W ) |
|
| 4 | 2 3 | ocvss | |- ( ( ocv ` W ) ` A ) C_ ( Base ` W ) |
| 5 | 2 3 | ocvss | |- ( ( ocv ` W ) ` B ) C_ ( Base ` W ) |
| 6 | 4 5 | unssi | |- ( ( ( ocv ` W ) ` A ) u. ( ( ocv ` W ) ` B ) ) C_ ( Base ` W ) |
| 7 | 2 1 3 | ocvcss | |- ( ( W e. PreHil /\ ( ( ( ocv ` W ) ` A ) u. ( ( ocv ` W ) ` B ) ) C_ ( Base ` W ) ) -> ( ( ocv ` W ) ` ( ( ( ocv ` W ) ` A ) u. ( ( ocv ` W ) ` B ) ) ) e. C ) |
| 8 | 6 7 | mpan2 | |- ( W e. PreHil -> ( ( ocv ` W ) ` ( ( ( ocv ` W ) ` A ) u. ( ( ocv ` W ) ` B ) ) ) e. C ) |
| 9 | 3 1 | cssi | |- ( A e. C -> A = ( ( ocv ` W ) ` ( ( ocv ` W ) ` A ) ) ) |
| 10 | 3 1 | cssi | |- ( B e. C -> B = ( ( ocv ` W ) ` ( ( ocv ` W ) ` B ) ) ) |
| 11 | 9 10 | ineqan12d | |- ( ( A e. C /\ B e. C ) -> ( A i^i B ) = ( ( ( ocv ` W ) ` ( ( ocv ` W ) ` A ) ) i^i ( ( ocv ` W ) ` ( ( ocv ` W ) ` B ) ) ) ) |
| 12 | 3 | unocv | |- ( ( ocv ` W ) ` ( ( ( ocv ` W ) ` A ) u. ( ( ocv ` W ) ` B ) ) ) = ( ( ( ocv ` W ) ` ( ( ocv ` W ) ` A ) ) i^i ( ( ocv ` W ) ` ( ( ocv ` W ) ` B ) ) ) |
| 13 | 11 12 | eqtr4di | |- ( ( A e. C /\ B e. C ) -> ( A i^i B ) = ( ( ocv ` W ) ` ( ( ( ocv ` W ) ` A ) u. ( ( ocv ` W ) ` B ) ) ) ) |
| 14 | 13 | eleq1d | |- ( ( A e. C /\ B e. C ) -> ( ( A i^i B ) e. C <-> ( ( ocv ` W ) ` ( ( ( ocv ` W ) ` A ) u. ( ( ocv ` W ) ` B ) ) ) e. C ) ) |
| 15 | 8 14 | syl5ibrcom | |- ( W e. PreHil -> ( ( A e. C /\ B e. C ) -> ( A i^i B ) e. C ) ) |
| 16 | 15 | 3impib | |- ( ( W e. PreHil /\ A e. C /\ B e. C ) -> ( A i^i B ) e. C ) |