This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero vector in the complement of a subspace does not belong to the subspace. (Contributed by NM, 10-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ocnel | |- ( ( H e. SH /\ A e. ( _|_ ` H ) /\ A =/= 0h ) -> -. A e. H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | |- ( A e. ( H i^i ( _|_ ` H ) ) <-> ( A e. H /\ A e. ( _|_ ` H ) ) ) |
|
| 2 | ocin | |- ( H e. SH -> ( H i^i ( _|_ ` H ) ) = 0H ) |
|
| 3 | 2 | eleq2d | |- ( H e. SH -> ( A e. ( H i^i ( _|_ ` H ) ) <-> A e. 0H ) ) |
| 4 | 3 | biimpd | |- ( H e. SH -> ( A e. ( H i^i ( _|_ ` H ) ) -> A e. 0H ) ) |
| 5 | 1 4 | biimtrrid | |- ( H e. SH -> ( ( A e. H /\ A e. ( _|_ ` H ) ) -> A e. 0H ) ) |
| 6 | 5 | expcomd | |- ( H e. SH -> ( A e. ( _|_ ` H ) -> ( A e. H -> A e. 0H ) ) ) |
| 7 | 6 | imp | |- ( ( H e. SH /\ A e. ( _|_ ` H ) ) -> ( A e. H -> A e. 0H ) ) |
| 8 | elch0 | |- ( A e. 0H <-> A = 0h ) |
|
| 9 | 7 8 | imbitrdi | |- ( ( H e. SH /\ A e. ( _|_ ` H ) ) -> ( A e. H -> A = 0h ) ) |
| 10 | 9 | necon3ad | |- ( ( H e. SH /\ A e. ( _|_ ` H ) ) -> ( A =/= 0h -> -. A e. H ) ) |
| 11 | 10 | 3impia | |- ( ( H e. SH /\ A e. ( _|_ ` H ) /\ A =/= 0h ) -> -. A e. H ) |