This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for oacomf1o . (Contributed by Mario Carneiro, 30-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oacomf1olem.1 | |- F = ( x e. A |-> ( B +o x ) ) |
|
| Assertion | oacomf1olem | |- ( ( A e. On /\ B e. On ) -> ( F : A -1-1-onto-> ran F /\ ( ran F i^i B ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oacomf1olem.1 | |- F = ( x e. A |-> ( B +o x ) ) |
|
| 2 | oaf1o | |- ( B e. On -> ( x e. On |-> ( B +o x ) ) : On -1-1-onto-> ( On \ B ) ) |
|
| 3 | 2 | adantl | |- ( ( A e. On /\ B e. On ) -> ( x e. On |-> ( B +o x ) ) : On -1-1-onto-> ( On \ B ) ) |
| 4 | f1of1 | |- ( ( x e. On |-> ( B +o x ) ) : On -1-1-onto-> ( On \ B ) -> ( x e. On |-> ( B +o x ) ) : On -1-1-> ( On \ B ) ) |
|
| 5 | 3 4 | syl | |- ( ( A e. On /\ B e. On ) -> ( x e. On |-> ( B +o x ) ) : On -1-1-> ( On \ B ) ) |
| 6 | onss | |- ( A e. On -> A C_ On ) |
|
| 7 | 6 | adantr | |- ( ( A e. On /\ B e. On ) -> A C_ On ) |
| 8 | f1ssres | |- ( ( ( x e. On |-> ( B +o x ) ) : On -1-1-> ( On \ B ) /\ A C_ On ) -> ( ( x e. On |-> ( B +o x ) ) |` A ) : A -1-1-> ( On \ B ) ) |
|
| 9 | 5 7 8 | syl2anc | |- ( ( A e. On /\ B e. On ) -> ( ( x e. On |-> ( B +o x ) ) |` A ) : A -1-1-> ( On \ B ) ) |
| 10 | 7 | resmptd | |- ( ( A e. On /\ B e. On ) -> ( ( x e. On |-> ( B +o x ) ) |` A ) = ( x e. A |-> ( B +o x ) ) ) |
| 11 | 10 1 | eqtr4di | |- ( ( A e. On /\ B e. On ) -> ( ( x e. On |-> ( B +o x ) ) |` A ) = F ) |
| 12 | f1eq1 | |- ( ( ( x e. On |-> ( B +o x ) ) |` A ) = F -> ( ( ( x e. On |-> ( B +o x ) ) |` A ) : A -1-1-> ( On \ B ) <-> F : A -1-1-> ( On \ B ) ) ) |
|
| 13 | 11 12 | syl | |- ( ( A e. On /\ B e. On ) -> ( ( ( x e. On |-> ( B +o x ) ) |` A ) : A -1-1-> ( On \ B ) <-> F : A -1-1-> ( On \ B ) ) ) |
| 14 | 9 13 | mpbid | |- ( ( A e. On /\ B e. On ) -> F : A -1-1-> ( On \ B ) ) |
| 15 | f1f1orn | |- ( F : A -1-1-> ( On \ B ) -> F : A -1-1-onto-> ran F ) |
|
| 16 | 14 15 | syl | |- ( ( A e. On /\ B e. On ) -> F : A -1-1-onto-> ran F ) |
| 17 | f1f | |- ( F : A -1-1-> ( On \ B ) -> F : A --> ( On \ B ) ) |
|
| 18 | frn | |- ( F : A --> ( On \ B ) -> ran F C_ ( On \ B ) ) |
|
| 19 | 14 17 18 | 3syl | |- ( ( A e. On /\ B e. On ) -> ran F C_ ( On \ B ) ) |
| 20 | 19 | difss2d | |- ( ( A e. On /\ B e. On ) -> ran F C_ On ) |
| 21 | reldisj | |- ( ran F C_ On -> ( ( ran F i^i B ) = (/) <-> ran F C_ ( On \ B ) ) ) |
|
| 22 | 20 21 | syl | |- ( ( A e. On /\ B e. On ) -> ( ( ran F i^i B ) = (/) <-> ran F C_ ( On \ B ) ) ) |
| 23 | 19 22 | mpbird | |- ( ( A e. On /\ B e. On ) -> ( ran F i^i B ) = (/) ) |
| 24 | 16 23 | jca | |- ( ( A e. On /\ B e. On ) -> ( F : A -1-1-onto-> ran F /\ ( ran F i^i B ) = (/) ) ) |