This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double negative of a vector. (Contributed by NM, 4-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvnegneg.1 | |- X = ( BaseSet ` U ) |
|
| nvnegneg.4 | |- S = ( .sOLD ` U ) |
||
| Assertion | nvnegneg | |- ( ( U e. NrmCVec /\ A e. X ) -> ( -u 1 S ( -u 1 S A ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvnegneg.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvnegneg.4 | |- S = ( .sOLD ` U ) |
|
| 3 | neg1cn | |- -u 1 e. CC |
|
| 4 | 1 2 | nvscl | |- ( ( U e. NrmCVec /\ -u 1 e. CC /\ A e. X ) -> ( -u 1 S A ) e. X ) |
| 5 | 3 4 | mp3an2 | |- ( ( U e. NrmCVec /\ A e. X ) -> ( -u 1 S A ) e. X ) |
| 6 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 7 | eqid | |- ( inv ` ( +v ` U ) ) = ( inv ` ( +v ` U ) ) |
|
| 8 | 1 6 2 7 | nvinv | |- ( ( U e. NrmCVec /\ ( -u 1 S A ) e. X ) -> ( -u 1 S ( -u 1 S A ) ) = ( ( inv ` ( +v ` U ) ) ` ( -u 1 S A ) ) ) |
| 9 | 5 8 | syldan | |- ( ( U e. NrmCVec /\ A e. X ) -> ( -u 1 S ( -u 1 S A ) ) = ( ( inv ` ( +v ` U ) ) ` ( -u 1 S A ) ) ) |
| 10 | 1 6 2 7 | nvinv | |- ( ( U e. NrmCVec /\ A e. X ) -> ( -u 1 S A ) = ( ( inv ` ( +v ` U ) ) ` A ) ) |
| 11 | 10 | fveq2d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( inv ` ( +v ` U ) ) ` ( -u 1 S A ) ) = ( ( inv ` ( +v ` U ) ) ` ( ( inv ` ( +v ` U ) ) ` A ) ) ) |
| 12 | 6 | nvgrp | |- ( U e. NrmCVec -> ( +v ` U ) e. GrpOp ) |
| 13 | 1 6 | bafval | |- X = ran ( +v ` U ) |
| 14 | 13 7 | grpo2inv | |- ( ( ( +v ` U ) e. GrpOp /\ A e. X ) -> ( ( inv ` ( +v ` U ) ) ` ( ( inv ` ( +v ` U ) ) ` A ) ) = A ) |
| 15 | 12 14 | sylan | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( inv ` ( +v ` U ) ) ` ( ( inv ` ( +v ` U ) ) ` A ) ) = A ) |
| 16 | 9 11 15 | 3eqtrd | |- ( ( U e. NrmCVec /\ A e. X ) -> ( -u 1 S ( -u 1 S A ) ) = A ) |