This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of a curried function with a constant first argument. (Contributed by NM, 29-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | curry1.1 | |- G = ( F o. `' ( 2nd |` ( { C } X. _V ) ) ) |
|
| Assertion | curry1f | |- ( ( F : ( A X. B ) --> D /\ C e. A ) -> G : B --> D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curry1.1 | |- G = ( F o. `' ( 2nd |` ( { C } X. _V ) ) ) |
|
| 2 | ffn | |- ( F : ( A X. B ) --> D -> F Fn ( A X. B ) ) |
|
| 3 | 1 | curry1 | |- ( ( F Fn ( A X. B ) /\ C e. A ) -> G = ( x e. B |-> ( C F x ) ) ) |
| 4 | 2 3 | sylan | |- ( ( F : ( A X. B ) --> D /\ C e. A ) -> G = ( x e. B |-> ( C F x ) ) ) |
| 5 | fovcdm | |- ( ( F : ( A X. B ) --> D /\ C e. A /\ x e. B ) -> ( C F x ) e. D ) |
|
| 6 | 5 | 3expa | |- ( ( ( F : ( A X. B ) --> D /\ C e. A ) /\ x e. B ) -> ( C F x ) e. D ) |
| 7 | 4 6 | fmpt3d | |- ( ( F : ( A X. B ) --> D /\ C e. A ) -> G : B --> D ) |