This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two non-trivially converging products converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ntrivcvgmul.1 | |- Z = ( ZZ>= ` M ) |
|
| ntrivcvgmul.3 | |- ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) ) |
||
| ntrivcvgmul.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
||
| ntrivcvgmul.5 | |- ( ph -> E. m e. Z E. z ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) |
||
| ntrivcvgmul.6 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
||
| ntrivcvgmul.7 | |- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) x. ( G ` k ) ) ) |
||
| Assertion | ntrivcvgmul | |- ( ph -> E. p e. Z E. w ( w =/= 0 /\ seq p ( x. , H ) ~~> w ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrivcvgmul.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | ntrivcvgmul.3 | |- ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) ) |
|
| 3 | ntrivcvgmul.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
|
| 4 | ntrivcvgmul.5 | |- ( ph -> E. m e. Z E. z ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) |
|
| 5 | ntrivcvgmul.6 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
|
| 6 | ntrivcvgmul.7 | |- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) x. ( G ` k ) ) ) |
|
| 7 | exdistrv | |- ( E. y E. z ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) <-> ( E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ E. z ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) |
|
| 8 | 7 | 2rexbii | |- ( E. n e. Z E. m e. Z E. y E. z ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) <-> E. n e. Z E. m e. Z ( E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ E. z ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) |
| 9 | reeanv | |- ( E. n e. Z E. m e. Z ( E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ E. z ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) <-> ( E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ E. m e. Z E. z ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) |
|
| 10 | 8 9 | bitri | |- ( E. n e. Z E. m e. Z E. y E. z ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) <-> ( E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ E. m e. Z E. z ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) |
| 11 | 2 4 10 | sylanbrc | |- ( ph -> E. n e. Z E. m e. Z E. y E. z ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) |
| 12 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 13 | 1 12 | eqsstri | |- Z C_ ZZ |
| 14 | simp2l | |- ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) -> n e. Z ) |
|
| 15 | 13 14 | sselid | |- ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) -> n e. ZZ ) |
| 16 | 15 | zred | |- ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) -> n e. RR ) |
| 17 | simp2r | |- ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) -> m e. Z ) |
|
| 18 | 13 17 | sselid | |- ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) -> m e. ZZ ) |
| 19 | 18 | zred | |- ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) -> m e. RR ) |
| 20 | simpl2l | |- ( ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) /\ n <_ m ) -> n e. Z ) |
|
| 21 | simpl2r | |- ( ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) /\ n <_ m ) -> m e. Z ) |
|
| 22 | simp3ll | |- ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) -> y =/= 0 ) |
|
| 23 | 22 | adantr | |- ( ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) /\ n <_ m ) -> y =/= 0 ) |
| 24 | simp3rl | |- ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) -> z =/= 0 ) |
|
| 25 | 24 | adantr | |- ( ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) /\ n <_ m ) -> z =/= 0 ) |
| 26 | simp3lr | |- ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) -> seq n ( x. , F ) ~~> y ) |
|
| 27 | 26 | adantr | |- ( ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) /\ n <_ m ) -> seq n ( x. , F ) ~~> y ) |
| 28 | simp3rr | |- ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) -> seq m ( x. , G ) ~~> z ) |
|
| 29 | 28 | adantr | |- ( ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) /\ n <_ m ) -> seq m ( x. , G ) ~~> z ) |
| 30 | simpl1 | |- ( ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) /\ n <_ m ) -> ph ) |
|
| 31 | 30 3 | sylan | |- ( ( ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) /\ n <_ m ) /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 32 | 30 5 | sylan | |- ( ( ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) /\ n <_ m ) /\ k e. Z ) -> ( G ` k ) e. CC ) |
| 33 | simpr | |- ( ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) /\ n <_ m ) -> n <_ m ) |
|
| 34 | 30 6 | sylan | |- ( ( ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) /\ n <_ m ) /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) x. ( G ` k ) ) ) |
| 35 | 1 20 21 23 25 27 29 31 32 33 34 | ntrivcvgmullem | |- ( ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) /\ n <_ m ) -> E. p e. Z E. w ( w =/= 0 /\ seq p ( x. , H ) ~~> w ) ) |
| 36 | simpl2r | |- ( ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) /\ m <_ n ) -> m e. Z ) |
|
| 37 | simpl2l | |- ( ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) /\ m <_ n ) -> n e. Z ) |
|
| 38 | 24 | adantr | |- ( ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) /\ m <_ n ) -> z =/= 0 ) |
| 39 | 22 | adantr | |- ( ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) /\ m <_ n ) -> y =/= 0 ) |
| 40 | 28 | adantr | |- ( ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) /\ m <_ n ) -> seq m ( x. , G ) ~~> z ) |
| 41 | 26 | adantr | |- ( ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) /\ m <_ n ) -> seq n ( x. , F ) ~~> y ) |
| 42 | simpl1 | |- ( ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) /\ m <_ n ) -> ph ) |
|
| 43 | 42 5 | sylan | |- ( ( ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) /\ m <_ n ) /\ k e. Z ) -> ( G ` k ) e. CC ) |
| 44 | 42 3 | sylan | |- ( ( ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) /\ m <_ n ) /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 45 | simpr | |- ( ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) /\ m <_ n ) -> m <_ n ) |
|
| 46 | 3 5 | mulcomd | |- ( ( ph /\ k e. Z ) -> ( ( F ` k ) x. ( G ` k ) ) = ( ( G ` k ) x. ( F ` k ) ) ) |
| 47 | 6 46 | eqtrd | |- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( G ` k ) x. ( F ` k ) ) ) |
| 48 | 42 47 | sylan | |- ( ( ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) /\ m <_ n ) /\ k e. Z ) -> ( H ` k ) = ( ( G ` k ) x. ( F ` k ) ) ) |
| 49 | 1 36 37 38 39 40 41 43 44 45 48 | ntrivcvgmullem | |- ( ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) /\ m <_ n ) -> E. p e. Z E. w ( w =/= 0 /\ seq p ( x. , H ) ~~> w ) ) |
| 50 | 16 19 35 49 | lecasei | |- ( ( ph /\ ( n e. Z /\ m e. Z ) /\ ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) ) -> E. p e. Z E. w ( w =/= 0 /\ seq p ( x. , H ) ~~> w ) ) |
| 51 | 50 | 3expia | |- ( ( ph /\ ( n e. Z /\ m e. Z ) ) -> ( ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) -> E. p e. Z E. w ( w =/= 0 /\ seq p ( x. , H ) ~~> w ) ) ) |
| 52 | 51 | exlimdvv | |- ( ( ph /\ ( n e. Z /\ m e. Z ) ) -> ( E. y E. z ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) -> E. p e. Z E. w ( w =/= 0 /\ seq p ( x. , H ) ~~> w ) ) ) |
| 53 | 52 | rexlimdvva | |- ( ph -> ( E. n e. Z E. m e. Z E. y E. z ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) -> E. p e. Z E. w ( w =/= 0 /\ seq p ( x. , H ) ~~> w ) ) ) |
| 54 | 11 53 | mpd | |- ( ph -> E. p e. Z E. w ( w =/= 0 /\ seq p ( x. , H ) ~~> w ) ) |