This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An inference for compositeness. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nprmi.1 | |- A e. NN |
|
| nprmi.2 | |- B e. NN |
||
| nprmi.3 | |- 1 < A |
||
| nprmi.4 | |- 1 < B |
||
| nprmi.5 | |- ( A x. B ) = N |
||
| Assertion | nprmi | |- -. N e. Prime |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nprmi.1 | |- A e. NN |
|
| 2 | nprmi.2 | |- B e. NN |
|
| 3 | nprmi.3 | |- 1 < A |
|
| 4 | nprmi.4 | |- 1 < B |
|
| 5 | nprmi.5 | |- ( A x. B ) = N |
|
| 6 | eluz2b2 | |- ( A e. ( ZZ>= ` 2 ) <-> ( A e. NN /\ 1 < A ) ) |
|
| 7 | eluz2b2 | |- ( B e. ( ZZ>= ` 2 ) <-> ( B e. NN /\ 1 < B ) ) |
|
| 8 | nprm | |- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> -. ( A x. B ) e. Prime ) |
|
| 9 | 6 7 8 | syl2anbr | |- ( ( ( A e. NN /\ 1 < A ) /\ ( B e. NN /\ 1 < B ) ) -> -. ( A x. B ) e. Prime ) |
| 10 | 1 3 2 4 9 | mp4an | |- -. ( A x. B ) e. Prime |
| 11 | 5 | eleq1i | |- ( ( A x. B ) e. Prime <-> N e. Prime ) |
| 12 | 10 11 | mtbi | |- -. N e. Prime |