This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Vector cancellation law. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hvnegdi.1 | |- A e. ~H |
|
| hvnegdi.2 | |- B e. ~H |
||
| Assertion | hvsubcan2i | |- ( ( A +h B ) +h ( A -h B ) ) = ( 2 .h A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvnegdi.1 | |- A e. ~H |
|
| 2 | hvnegdi.2 | |- B e. ~H |
|
| 3 | 1 2 | hvsubvali | |- ( A -h B ) = ( A +h ( -u 1 .h B ) ) |
| 4 | 3 | oveq2i | |- ( ( A +h B ) +h ( A -h B ) ) = ( ( A +h B ) +h ( A +h ( -u 1 .h B ) ) ) |
| 5 | neg1cn | |- -u 1 e. CC |
|
| 6 | 5 2 | hvmulcli | |- ( -u 1 .h B ) e. ~H |
| 7 | 1 2 1 6 | hvadd4i | |- ( ( A +h B ) +h ( A +h ( -u 1 .h B ) ) ) = ( ( A +h A ) +h ( B +h ( -u 1 .h B ) ) ) |
| 8 | hv2times | |- ( A e. ~H -> ( 2 .h A ) = ( A +h A ) ) |
|
| 9 | 1 8 | ax-mp | |- ( 2 .h A ) = ( A +h A ) |
| 10 | 9 | eqcomi | |- ( A +h A ) = ( 2 .h A ) |
| 11 | 2 | hvnegidi | |- ( B +h ( -u 1 .h B ) ) = 0h |
| 12 | 10 11 | oveq12i | |- ( ( A +h A ) +h ( B +h ( -u 1 .h B ) ) ) = ( ( 2 .h A ) +h 0h ) |
| 13 | 7 12 | eqtri | |- ( ( A +h B ) +h ( A +h ( -u 1 .h B ) ) ) = ( ( 2 .h A ) +h 0h ) |
| 14 | 2cn | |- 2 e. CC |
|
| 15 | 14 1 | hvmulcli | |- ( 2 .h A ) e. ~H |
| 16 | ax-hvaddid | |- ( ( 2 .h A ) e. ~H -> ( ( 2 .h A ) +h 0h ) = ( 2 .h A ) ) |
|
| 17 | 15 16 | ax-mp | |- ( ( 2 .h A ) +h 0h ) = ( 2 .h A ) |
| 18 | 13 17 | eqtri | |- ( ( A +h B ) +h ( A +h ( -u 1 .h B ) ) ) = ( 2 .h A ) |
| 19 | 4 18 | eqtri | |- ( ( A +h B ) +h ( A -h B ) ) = ( 2 .h A ) |