This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 3.3(iii) of Beran p. 97. (Contributed by NM, 29-Jul-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | norm-iii.1 | |- A e. CC |
|
| norm-iii.2 | |- B e. ~H |
||
| Assertion | norm-iii-i | |- ( normh ` ( A .h B ) ) = ( ( abs ` A ) x. ( normh ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norm-iii.1 | |- A e. CC |
|
| 2 | norm-iii.2 | |- B e. ~H |
|
| 3 | 1 1 2 2 | his35i | |- ( ( A .h B ) .ih ( A .h B ) ) = ( ( A x. ( * ` A ) ) x. ( B .ih B ) ) |
| 4 | 3 | fveq2i | |- ( sqrt ` ( ( A .h B ) .ih ( A .h B ) ) ) = ( sqrt ` ( ( A x. ( * ` A ) ) x. ( B .ih B ) ) ) |
| 5 | 1 | cjmulrcli | |- ( A x. ( * ` A ) ) e. RR |
| 6 | hiidrcl | |- ( B e. ~H -> ( B .ih B ) e. RR ) |
|
| 7 | 2 6 | ax-mp | |- ( B .ih B ) e. RR |
| 8 | 1 | cjmulge0i | |- 0 <_ ( A x. ( * ` A ) ) |
| 9 | hiidge0 | |- ( B e. ~H -> 0 <_ ( B .ih B ) ) |
|
| 10 | 2 9 | ax-mp | |- 0 <_ ( B .ih B ) |
| 11 | 5 7 8 10 | sqrtmulii | |- ( sqrt ` ( ( A x. ( * ` A ) ) x. ( B .ih B ) ) ) = ( ( sqrt ` ( A x. ( * ` A ) ) ) x. ( sqrt ` ( B .ih B ) ) ) |
| 12 | 4 11 | eqtri | |- ( sqrt ` ( ( A .h B ) .ih ( A .h B ) ) ) = ( ( sqrt ` ( A x. ( * ` A ) ) ) x. ( sqrt ` ( B .ih B ) ) ) |
| 13 | 1 2 | hvmulcli | |- ( A .h B ) e. ~H |
| 14 | normval | |- ( ( A .h B ) e. ~H -> ( normh ` ( A .h B ) ) = ( sqrt ` ( ( A .h B ) .ih ( A .h B ) ) ) ) |
|
| 15 | 13 14 | ax-mp | |- ( normh ` ( A .h B ) ) = ( sqrt ` ( ( A .h B ) .ih ( A .h B ) ) ) |
| 16 | absval | |- ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
|
| 17 | 1 16 | ax-mp | |- ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) |
| 18 | normval | |- ( B e. ~H -> ( normh ` B ) = ( sqrt ` ( B .ih B ) ) ) |
|
| 19 | 2 18 | ax-mp | |- ( normh ` B ) = ( sqrt ` ( B .ih B ) ) |
| 20 | 17 19 | oveq12i | |- ( ( abs ` A ) x. ( normh ` B ) ) = ( ( sqrt ` ( A x. ( * ` A ) ) ) x. ( sqrt ` ( B .ih B ) ) ) |
| 21 | 12 15 20 | 3eqtr4i | |- ( normh ` ( A .h B ) ) = ( ( abs ` A ) x. ( normh ` B ) ) |